Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
最初,电和磁被视为单独的科目。在后期由于奥斯特的贡献,法拉第、麦克斯韦,等等,它进化作为一个统一的主题。< img src = " https://www.tutorialspoint.com/assets/questions/media/539016 - 1674548842. - jpg”=“边框”风格=“浮动:正确;宽度:180.31 px;高度:194.734 px;" / >,载流导线周围产生磁场。法拉第通过他的实验表明,当前可以即使没有电池的电路。磁场的变化可以电路中产生电流。这个结果被称为电磁感应。麦克斯韦试图编写所有电和磁的主要方程在一个统一的、紧凑的方式。这些方程被称为麦克斯韦方程。
这组方程包含-高斯定理的静电,高斯法律磁性、安培全电流定律和法拉第电磁感应定律。麦克斯韦发现一些矛盾在安培定律。他修改这个方程,引入一个新的概念叫做位移电流。因此这个方程有时也被称为Maxwell-ampere方程。
What is Displacement Current?
詹姆斯·克拉克·麦克斯韦提出了这个概念。如果有一个区域费用和流动电流存在,则磁场出现到期。根据麦克斯韦,在太空中,由于位移电流产生磁场。与传统的电流不同,它不是由电荷。由于电容器的板块之间的自由空间。我们可以推导出位移电流的表达式通过电容器的例子。
Displacement Current Equation
到达位移电流方程,我们使用一个电容器的例子。我们试图找到使用安培定律——磁场
$ $ mathrm{关节overrightarrow {B}。overrightarrowμ_ {dl} = {0} i_ {enc}} $ $
B =磁场,i =净电流通过表面。
首先,我们试着计算出磁场通过表面美元mathrm {S_ {1}} $。当前通过这个表面是美元mathrm {i_ {c}} $。因此会有一些磁场根据安培定律。如果我们把表面美元mathrm {S_{2}}然后美元就不会有电流通过。这意味着美元mathrm {overrightarrow {B} .overrightarrow {dl}} $ ?零,零的同时。这是一个矛盾的结果。
麦克斯韦解决了这个问题通过引入位移电流。
$ $ mathrm {i_ {d} =ε_{0}压裂{dφ_ {E}} {dt}} $ $
这里美元mathrm {i_ {d}} $ =位移电流
美元$ mathrm{φ_ {E}} =电通量
我们这学期可以包括安培定律。
$ $ mathrm{关节overrightarrow {B}。overrightarrowμ_ {dl} = {0} (i_ {c} + i_ {d}) =μ_ {0}i_ {c} +με_{0}_{0}压裂{dphi _ {E}} {dt}} $ $
它被称为Maxwell-ampere方程。
如果我们使用这个关系,我们可以解决歧义产生的电容问题。
表面mathrm美元{S_ {1}: i = i_ {c}} $和$ mathrm {i_ {d} = 0} $由于没有变化是电通量。
表面mathrm美元{S_ {2}: i = i_ {d}} $和$ mathrm {i_ {c} = 0}因为没有美元的指控。
因此,现在的磁场将零表面。
Characteristics of Displacement Current
位移电流的产生是由于不同的电通量。它可以写成
$ $ mathrm {i_ {d} =ε_{0}压裂{dphi _ {E}} {dt}} $ $
它具有以下特点
它是一个矢量。
在安培测量及其维度与传统的电流。
它不是由电子的流动,而是电场的变化。
它不遵循欧姆定律。
为一个封闭的路径,它是零。
它不是一个实际的电流。
Apppcation of Displacement Current
我们可以计算磁场在一个圆形电容器使用位移电流。
假设电容板的半径R,然后我们想象这些板块之间的圆半径为R的线。我们把导线中的电流等于位移电流美元mathrm {i_ {d}} $。我们可以在这里使用安培的与电路有关的法律。由于只有盘子——之间的位移电流
$ $ mathrm{关节overrightarrow {B}。overrightarrow {dl} = Boint dl = B2pi r} $ $
电容器内r =领域点的中心。
The electric current is uniformly distributed and the current enclosed by the loop $mathrm{i_{enc}}$, is proportional to the area enclosed by the loop. Hence
$$mathrm{i_{enc}=i_{d}frac{pi r^{2}}{pi R^{2}}}$$
这意味着
$$mathrm{B2pi r=mu _{0}i_{enc}}$$
$$mathrm{B2pi r=mu _{0}i_{d}frac{pi r^{2}}{pi R^{2}}}$$
$ $ mathrm {B =(压裂{μ_ {0}i_ {d}}{2πR ^ {2}}) R} $ $
电容器内部的磁场。它是成反比的半径的平方电容器盘子和直接与现场点之间的距离成正比的中心。
我们也可以计算圆形电容器外的磁场,这将是-
$$mathrm{B=frac{mu _{0}i_{d}}{2pi r}}$$
Conclusion
麦克斯韦发现了一些不一致的安培定律。他修改了这个方程通过引入电流称为位移电流。位移电流并不来自于电荷的流动,但不同的电通量。其单位和尺寸是一样的传统电流。
FAQs
Q1。写出麦克斯韦方程的电磁学。
Ans麦克斯韦电磁方程后,
$ mathrm{关节overrightarrow {E}。overrightarrow {dA} =压裂{q_ {enc}}{ε_{0}}},美元净电荷的电通量之间的关系。
$ mathrm{关节overrightarrow {E}。overrightarrow {dA} = 0},美元净磁荷磁通量之间的关系。
$ mathrm{关节overrightarrow {E}。overrightarrow {dA} =压裂{dphi _ {B}} {dt}} $,它与磁通变化的感应电场。
$ mathrm{关节overrightarrow {B}。overrightarrowμ_ {dl} = {0} i_ {c} +με_{0}_{0}压裂{dphi _ {E}} {dt}} $,它与当前的感应磁场。
Q2。半径为2厘米的圆形电容器,4的位移电流,发现磁场在远处电容器内部的R / 4。
Ans。鉴于R = 2厘米= $ mathrm {2 ime 10 ^ {2} m} $
$$mathrm{I = 4A}$$
$$mathrm{r=frac{R}{4}}$$
我们可以用这个公式,我们在前一节中,派生而来
$ $ mathrm {B =(压裂{μ_ {0}i_ {d}}{2πR ^ {2}}) R} $ $
$ $ mathrm {B =压裂{4πime 10 ^ {7} ime 4}{2πime R ^{2}}压裂{R}{4} =压裂{2 ime 10 ^ {7} ime 4} {R ime 4}} $ $
$ $ mathrm {B =压裂{2 ime 10 ^ {7}} {2 ime 10 ^ {2}} = 10 ^ {5}} $ $
$$mathrm{B=10^{-5}T}$$
第三季。安培的状态与电路有关的法律。
答。安培定律可以在以下方式——“力的线积分的字段包含稳定在任何闭合线圈电流成正比的电流通过线圈。”
假设有一个封闭的路径C和净电流通过它是美元mathrm {i_ {enc}} $。然后我们可以写
$ $ mathrm{关节overrightarrow {B}。overrightarrowμ_ {dl} = {0} i_ {enc}} $ $
Q4. A parallel plate capacitor at a potential of 100 V. If the distance between the plates of $mathrm{}$?. Calculate the displacement current for $mathrm{}$.
答。潜在的平行板电容器V = 100
板之间的距离d = 2毫米= $ mathrm {2 ime 10 ^ {3} mm} $
$ $ mathrm{板块面积::::=:20 ime 10 ^ {4} m ^ {2}} $ $
$ $ mathrm{时间:t = 2μs = 2 ime 10 ^{6}年代}$ $
$ $ mathrm{位移电流:i_ {d} =ε_{0}压裂{dphi} {dt} =ε_{0}压裂{EA} {t}} $ $
我们知道美元mathrm {E =压裂{v} {d}} $
$ $ mathrm{因此,i_ {d} =ε_{0}压裂{vA} {dt} = 8.85 ime 10 ^{-12}压裂{10 ^ {2}ime 20 ime 10 ^ {4}} {2 ime 10 ^ {3} ime 10 ^ {6} ime 2}} $ $
$ $ mathrm {i_ {d} =压裂{8.85 ime 5 ime 10 ^ {-16}} {10 ^ {9}} = 8.85 ime 5 ime 10 ^ {7}} $ $
$ $ mathrm {i_ {d} = 44.25 ime 10 ^{7}一}$ $
$ $ mathrm {i_ {d} = 4.4μA} $ $
Q5。有必要改变电场存在的位移电流?
答,位移电流可以存在如果有电通量的变化。有可能在某些情况下,电场是不会改变,但总体流量是不同的。