Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
物体的惯性矩(MOI)由平行轴定理确定,平行轴定理平行于物体轴线的质量,并且它也穿过重力中心。PAT表明,物体的惯性矩与物体质量和轴距平方的乘积之和定义了PAT。它有助于找到杆、圆盘等物体的MOI。在本教程中,将进一步讨论平行轴定理。
History of Parallel Axis theorem
平行轴定理是克里斯蒂安·惠更斯在研究复摆时提出的。平行轴定理也被称为惠更斯-施泰纳定理,因为它是以“克里斯蒂安·惠更斯”和“雅各布·施泰纳”命名的
Parallel axis theorem
物体的平行轴定理用于评估具有平行于重心轴的轴线的固体和平面物体的MOI。根据Abdulghany(2017)的说法,物体的惯性矩决定了它在特定平面上的存在条件。
平行轴定理是由物体围绕穿过质量中点的轴的惯性与物体质量乘以两个轴之间距离的平方的乘积之和确定的(库,2022)。正如Wang&;Ricardo(2019),这一方面决定了定理的核心。
这个定理适用于任何固体,无论其形状如何
Figure 1: parallel Axes theorem
The formula for the Parallel axis theorem
平行轴定理与固体有关,通过将物体的惯性矩与物体质量乘以两个轴之间的平方距离的乘积相加来确定(phy astr,2022)。
I = Ix + Ma2
在这里
在这里‘I’ = moment in the body, Ix = moment of inertia of the particular rigid body and M = mass of the sopd object and a2 determines the square of the distance between two particular axes.
Figure 2: Parallel Axis Theorem
Derivation of the Parallel Axis theorem
这个定理可以通过以下方式导出,设Ix与特定固体物体的惯性矩有关,该物体正在穿过质心(设轴为AB),I将是物体绕使用a'B'确定的轴存在的惯性矩,该物体存在于距离“a”处(phy-aster,2022)。
现在,当考虑质量为“m”、距离重心点“r”的粒子时,可以得出a'B'=r+a
现在
I = Σm ( r + a ) 2
I = ∑m (r2 + a2 + 2ra)
I = ∑m r2 + ∑m a2 + ∑2ra
I = Ix + a2 ∑m + 2a∑m r
I = Ix + Ma2 + 0
I = Ix + Ma2
Parallel Axis theorem of Rod
杆的平行轴定理将主要由杆的惯性矩决定。杆的惯性矩公式为,
I = ⅓ ML2
杆的末端和杆的中心之间的距离通过,
a = L/2
因此,平行轴定理是通过以下方式导出的
Ix = ⅓ ML2 - M(L/2)2
Ix = ⅓ ML2 - 1/4 ML2
Ix = 1/12 ML2
Moment of inertia
先前已经研究过,惯性与身体表现的质量有关,以便抵抗线性运动状态的特定状态,无论是物体在运动还是处于静止状态(Rempe等人,2019)。物体的惯性矩通过符号Im表示,它只是物体存在的一种度量,以及它抵抗线性运动状态或旋转运动变化的相关能力。
在直线运动和旋转运动的情况下,惯性矩都起着确切的作用,因此可以比较这两种情况。因此,可以确定与物体相关的惯性矩是物体抵抗其运动状态变化的能力。
Im=Mr<sup>2
Figure 3: Moment of inertia
Apppcation of perpendicular and parallel axis theorem
垂直与平行轴定理被用于求任何刚性物体绕给定轴的惯性矩。为了计算旋转运动中任何物体的惯性矩,利用了平行轴与垂直轴定理。当任何物体绕特定轴的惯性矩已知时,利用平行轴定理,并用于计算绕平行于任何其他给定轴的轴的惯性力矩。在已知物体对两个垂直给定轴的惯性矩的情况下,利用垂直轴定理计算物体绕第三垂直轴的惯性力矩。
Conclusion
平行轴定理被应用于确定物体绕其平行轴的惯性矩。这个定理是克里斯蒂安·惠更斯在研究复摆原理时提出的。这个定理通常被称为惠更斯-施泰纳定理或简称为施泰纳定理。特定物体在轴向平面内的惯性矩等于物体的惯性矩与质量乘积的总和乘以所涉及的两个轴之间距离的平方。
FAQs
Q1.惯性矩是多少
任何物体的转动惯量都表示为转动惯量。惯性矩是与物体抵抗运动状态的趋势相关的度量;它可以是线性运动或旋转运动。惯性矩取决于物体的质量。更大的身体质量表示保持惯性状态的能力更强。
Q2.什么时候使用平行轴定理
当得到特定物体绕一个轴的惯性矩时,就会用到这个定理。然而,需要找到惯性矩是与第一轴平行的另一个轴。
Q3.平行轴定理的一般表达式是什么
平行轴定理通常由I=Ix+Ma2的表达式确定
这里,Ix表示绕通过质心的轴旋转的物体的惯性矩。“M”表示物体的总质量,a表示通过所考虑的特定物体质心的轴之间的距离。我表示平行于旋转轴的物体的惯性矩。
Q4.平行轴定理是谁发现的
平行轴定理是由查尔斯·惠更斯和雅各布·斯坦纳发现的。因此,它也被称为惠更斯-施泰纳定理,或者简单地说,它被称为施泰纳定理。
References
Journals
Abdulghany,A.R.(2017)。转动惯量平行轴定理的推广。《美国物理学杂志》,85(10),791-795。检索自:
Rempe,D.、Sridhar,S.、Wang,H.和;吉巴斯,L.(2019)。学习三维刚性物体的可推广最终状态动力学。在IEEE/CVF会议计算机视觉和模式识别研讨会论文集(第17-20页)。检索自:
Wang,J.和;Ricardo,B.(2019)。惯性矩计算的挤压法。物理老师,57(8),551-554检索自:
Websites
图书馆,2022年。关于惯性简介:平行轴定理。检索自:
[检索日期:2022年6月7日]phy-astgr,2022。关于惯性矩。检索自:
[检索日期:2022年6月7日]phy astr,2022年。关于平行轴定理。检索自:
[检索日期:2022年6月7日]