Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
一个粒子年代线性动量的定义是它的质量和速度的乘积。粒子的动量守恒是一个属性,任何粒子动量的总额从未改变。线性动量的粒子是一个矢量用美元mathrm vec {p} {} $
Conservation of Linear Momentum
如果净外力作用于系统的尸体为零,那么系统的动能保持不变。
重要的是要记住的动力系统,而不是单个粒子,是守恒的。系统中的个体身体的动量可能增加或减少取决于形势,但总是会系统的动量守恒的,只要没有外在的合力作用于它。
Conservation of Linear Momentum Formula
如果两个物体发生碰撞,碰撞前后的总动量是相同的如果没有外力作用于物体碰撞,根据动量守恒的原则。线性动量守恒当净外力为零,系统的动能保持不变,表示数学的公式。
最后的动量=初始动量
$$mathrm{P_i=P_f}$$
Linear Momentum Formula
线性动量是在数学上表示为:
$mathrm{vec{p}=m:vec{
u}}$
美元mathrm vec {p}}{$是线性动量
美元mathrm vec {
u}}{$线速度
m是身体的质量
Images Coming soon
Conservation of Linear Momentum Equation
第二运动定律可以用来解释动量守恒定律。根据牛顿第二运动定律,身体年代线性动量的变化率等于净外力。
在数学上表示为:
$ $ mathrm{压裂{dP} {dT}} $ $
$ $ mathrm{=压裂{m:
u} {dt}} $ $
$$mathrm{=mfrac{d
u}{dt}}$$
$$mathrm{=ma}$$
$$mathrm{=F_{net}}$$
如果身体s净外力为零,动量的变化率也是零,这意味着没有动量的变化。
Example of Linear Momentum Conservation
两个质量M和M是朝着相反的方向,速度v .如果他们碰撞和碰撞后一起行动,我们必须计算系统速度。动量是守恒的,因为没有外力作用于系统的两具尸体。
Initial momentum = Final momentum
$$mathrm{(Mv – mv) = (M+m)V_{Final}}$$
从这个方程,我们可以很容易的找到系统的最终速度。
Principle of Conservation of Momentum
在没有外力作用于孤立系统。在这种情况下,总动量的变化率保持不变。这表明数量是恒定的。
上面的解释是正确的线性动量守恒原理的推导。
我们可以说,无论任何系统交互的特征或属性,总动量将保持不变。
Applying the Principle of Conservation of Linear Momentum
我们必须考虑的对象是系统的一部分。
身体的系统识别内部和外部力量。
验证系统的孤立地位。
它应该确保最初的和最后的矢量是相等的。
在这里,动量是矢量。
Ice Skaters
考虑两个选手开始休息然后推在冰上互相摩擦在哪里更少。这里的女人重54公斤,而男人重88公斤。女人逃离的速度2.5米/秒。男人是什么年代反冲速度?
Images Coming soon
现在,
$$mathrm{m_1v+m_2v_2=0}$$
$ $ mathrm {vf_2 =压裂{f 1: v:} {m_2}} $ $
$ $ mathrm {vf_2 =压裂{(54:公斤)(压裂{2、5 m}{年代})}{88:公斤}}$ $
$ $ mathrm {vf_2 = -1.5 m / s} $ $
Linear Momentum Dimensional Formula
势头被定义为质量和速度的总和。否则,它是一个移动身体的运动量。
现在,线性动量=质量*速度- (1)
质量和速度的量纲公式如下:
$ mathrm{质量= (M ^ 1 l ^ 0 t ^ 0):——: (2)} $
速度= $ mathrm {(M ^ 0 l ^ 1 t ^ {1}):——: (3)} $
代入方程(2)和(3)方程(1)产量,p = mv
$ mathrm {L = (M ^ 1 L ^ 0 t ^ 0) * (M ^ 0 L ^ 1 t ^ {1}) = (M ^ 1 L ^ 1 t ^ {1})} $
因此,线性动量为代表的维度,mathrm美元(M ^ 1 l ^ 1 t ^{1})美元
Conservation of Linear Momentum Apppcations
火箭的发射是一个应用程序的动量守恒。随着火箭燃料的燃烧,废气向下推,向上推动火箭。摩托艇基于同样的原理,他们向后推水,推动以响应节约动力。
例子
以下是一些最知名的线性动量守恒定律的应用:
发射火箭
摩托艇:它向后推水,推动以节省动力。
反冲的一把枪和一个气球在空中的逃避是两种常见的例子这一现象。
汽车经验阻力的线性动量守恒。
专业游泳运动员会经常潜入水中跳水的姿势,而不是肚子里失败。跳水姿势可以让游泳者在水中达到更大的深度以最小的努力。
因为有线性动量守恒在抛物运动的情况下,弹丸上的横向力为零。
因为亚原子粒子只能生产和分析通过碰撞实验,我们理解动量帮助我们解读他们的本性。
一个重要的应用程序已经在空间科学。这是火箭发射的基本原理。因为线性动量是守恒的,火箭推进燃料的燃烧,产生向下的力,向上让火箭发射进入太空,进入地球轨道。
Significance of Linear Momentum
运动对象的特征在2 d平面线性动量。
线性动量组件作为坐标在哈密顿力学来研究物体的运动。
它代表了平移对称,因为它是一个移动系统的守恒量。
帮助我们理解线性运动在牛顿力学不仅通过强调速度,而且移动物体的质量。
FAQs
Q1。动力是什么?
答。质量和速度的乘积是动力。它是用来计算对象数量质量和速度。
Q2。动量守恒定律的公式。
Ans,动量守恒定律的公式是:
$ mathrm {m_1u_1 + m_2u_2: =: m_1v_1 + m_2v_2} $
第三季。动量守恒定律的一些示例列表。
答,动量守恒定律的例子有:
Motion of rockets
Air-filled balloons
System of gun and bullet
第四季度。动量是标量或矢量吗?
Ans动量是矢量。因为它具有大小和方向。
Q5。提到真/假:动量减少随着摩擦增加。
答。真的