Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
当我们研究电荷或一个系统,我们可以看到,每个主管都有一个明确的数量的电场产生的静电力排斥或吸引其他费用根据他们的本性和带电粒子。电力的影响可以的帮助下有经验的单位电荷,也称为测试电荷。电荷的电场周围电荷或系统可以描述的两种形式;电场和电势。
What is the Electric Potential of a Dipole and System of Charges?
偶极子的电势产生的静电势是由于偶极子。现在,首先,我们应该明确电势是什么?简单的话,我们可以说,一个点的电势电场的的作品我们要做移动点正电荷库仑从无穷级位置考虑一点,效果持续施加的电场存在静电的力量。因此,电势可以表示为工作单位电荷。
电势的标准测量单位是伏特。因此,一伏特电势点是一个焦耳的工作已经完成,把单位正电荷从无限远目标点位置的影响下由于电场力。
$$mathrm{V=frac{W}{q}}$$
两个电荷的电偶极子是一个系统有相同的值和相反的性质和这些被一条线连接,通过他们的中心。线的长度,通过它的中心被称为偶极子的长度。
测量电偶极子的力量我们使用术语偶极矩。偶极矩可以被定义为一个向量的大小是指控的产物以及它们之间的总分离和向量的方向将沿轴从消极到积极的。它是用p。
偶极矩的SI单位是 库仑米。
另一方面,如果我们使用一个系统的费用超过2电荷电势是叫电势由系统的费用。
Drive an expression for electric potential at a point due to electric dipole
电势创建在任何时候,如P,因为一个电偶极子可以表示为两个点;轴向点和赤道点。
电势由一个轴向点偶极子
Images Coming soon
在上面的图中,有一个偶极子有一双费用;积极的和消极的B,隔开一段距离用d等于2。点P,位于轴的偶极子是r距离中心的偶极子。
现在,点P的电荷的电势
$$mathrm{V=V_{1}+V_{2}}$$
$$mathrm{V_{1}=frac{1}{4pi epsilon _{0}}.frac{-q}{AP}}$$
现在,
$$mathrm{V_{2}=frac{1}{4pi epsilon _{0}}.frac{+q}{BP}}$$
总潜在的P,美元mathrm {V = V_ {1} + V_ {2}} $
所以,
$$mathrm{V=frac{1}{4pi epsilon _{0}}.frac{-q}{AP}+frac{1}{4pi epsilon _{0}}.frac{+q}{BP}}$$
我们知道美元mathrm{美联社= r +压裂{d}{2}} $和$ mathrm {BP = r-frac {d}{2}}而mathrm美元{压裂{d} {2} = a} $。
$ $ mathrm{因此,V =压裂{1}{4πε_ {0}}.frac {q} {r +} +压裂{1}{4πε_ {0}}.frac {+ q} {r}} $ $
$ $ mathrm {V =压裂{q}{4πε_ {0}}。离开{压裂{1}{r}压裂{1}{r +}引出}}$ $
$ $ mathrm {V =压裂{q}{4πε_ {0}}.left{压裂{(r + a) - (r)} {r ^{2} - ^{2}}引出}}$ $
$ $ mathrm {V =压裂{q}{4πε_ {0}}。离开{压裂{问ime 2} {r ^{2} - ^{2}}引出}}$ $
然而,美元mathrm {2 p = ime} $
因此,美元mathrm {V =压裂{q}{4πε_ {0}}。离开{压裂{p} {r ^{2} - ^{2}}引出}}$
如果偶极子很小,那么$ mathrm {^ {2} < < r ^ {2}} $
所以,
$$mathrm{V=frac{q}{4pi epsilon _{0}}.frac{p}{r^{2}}}$$
在一个赤道偶极子的电势
Images Coming soon
让偶极子一对指控有相反的性质和大小相等,即q和+ q,费用都是2 l远离对方。有一个随机点P坐落位置线性偶极子的垂直平分线,在远处的P r从偶极的中心。
现在, the distance of point P from -q and +q is the same which is $mathrm{sqrt{r^{2}+l^{2}}}$
根据电势的公式在位置创建P,因为这两项指控
$$mathrm{V=V_{1}+V_{2}}$$
$$mathrm{V=frac{1}{4pi epsilon _{0}}.frac{-q}{AP}+frac{1}{4pi epsilon _{0}}.frac{+q}{BP}}$$
在这里,美联社和英国石油公司都是一样的。
$$mathrm{所以,V=frac{1}{4pi epsilon _{0}}.frac{-q}{sqrt{r^{2}+l^{2}}}+frac{1}{4pi epsilon _{0}}.frac{+q}{sqrt{r^{2}+l^{2}}}}$$
$ $ mathrm{因此,压裂{1}{4πε_ {0}}.frac {q} {i - r ^ {{2} + l ^{2}}} +压裂{1}{4πε_ {0}}.frac {q} {i - r ^ {{2} + l ^ {2}}} = 0} $ $
$$mathrm{V=0}$$
因此,从上面的表达式发现赤道点的电势的电偶极子是零。
Conclusion
点的电势由偶极子是线性的偶极子是$ mathrm {V =压裂{q}{4πε_ {0}}。离开{压裂{p} {r ^{2} - ^{2}}引出}}美元而在赤道点电势的电偶极子是零。
FAQs
Q1。为什么在赤道的点偶极子电势为零?
Ans。是的,赤道的点偶极子的确电势为零,因为重点是在两国的指控有同等的价值,相反的性质。因此,两个罪名取消相互影响,结果变成了零。
Q2。电场是什么?
Ans,电场周围地区任何带电体或粒子,我们可以感受到引力或斥力当我们给该地区带来测试电荷。这个字段的大小成正比,如果身体有一个较大的值的字段就会大而强,反之亦然。
第三季。电场的强度是什么?
Ans.我们可以定义的电场强度的电荷在电场力的一个特定的点。如果有一个系统的强度将被所有指控力的总和。
第四季度。如何是电场与电势?
Ans。电场和电势低于−提供有直接关系
$$mathrm{E=-frac{dV}{dr}}$$
Q5。将电场的价值在一个点电位保持不变?
答。根据关系,美元mathrm {E =压裂{dV}{博士}}$,我们得到的导数电势距离也与电场有关。
因此,在任何时候如果电势恒定然后电场为零。
Q6。是什么方向,SI单位,和维电偶极矩公式?
Ans。偶极矩是矢量沿轴和谎言的偶极子从消极到积极的。此外,库仑计美元的SI单位和维数公式mathrm {M ^ {0} L ^ T ^{1}{1}我^ {1}}$
迄今为止。你什么意思电荷的量子化?
答。量子代表任何对象的最小数量。这里,电荷的量子化意味着身体上的电荷将永远是不可或缺的基本量子的倍数。
$$mathrm{q=ne}$$