Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
托里切利定律表示,流体的流速等于物体从特定距离自由下落的速度,该距离也等于流体自由表面的高度。伊万杰利斯塔·托里切利是一位意大利科学家,他于1643年发现了这条定律。后来,这个定律被证明是伯努利原理的规范。这一原理包括流体流过一个稳定的系统,流体的密度是恒定的,也就是说,流体可以是不可压缩的。
What is the law of Torricelp?
托里切利定理的托里切力定律是针对一个特定的条件导出的。条件是,孔口应该很小,速度和其他损失应该被忽略(Gao&;Hu,2020)。在流体流过小孔的情况下,在伯努利方程中忽略了末端的流体速度。根据托里切利定律,导出了射流速度并不完全取决于流体的流动方向。在这种情况下,通过孔口的流出速度可以由公式v=√2gh表示(Gao&;Hu,2020)。托里切利定律在日常生活中常见于几种情况。例如,在水箱溢水的过程中可以观察到托里切利定律的应用。
Theorem of Torricelp
托里切利的物理定律表明水箱的高度和速度之间存在着主要的关系。这个定律或方程解释了流经孔的流体与液体罐中液体的高度之间存在关系。
Figure 1: The apppcation of Torricelp’s law
托里切利定律也被称为托里切利氏原理,该原理主要说明用v表示的流体的速度。在储罐中,流体随着重力从孔口流出,与用h表示的垂直距离的平方根成相等比例(Wilpams,2021)。可以说,孔口的流体流出速度相当于下落物体在重力作用下的下落高度。
Law derivation of Torricelp
Figure 2: The mechanical properties of Torricelp’s law
在该图中,A1表示狭缝面积,V1表示有助于流体流动的速度。A2表示储罐中流体的自由表面面积,V2表示自由表面的流体速度(Alvaro Berlanga,2021)。如果AV为常数,则A<sub>1</sub>V<sub<1</sub>等于A<sub>2</sub>V<sub>2。在图的上下文中,A2>;A1,这一特定定律的力学性质取决于公式Pa+(1/2)ρv12+ρgy1=P+ρgy2,其中ρ代表流体密度。V表示液体的流动速度,g表示施加到流动流体的重力加速度。在这个公式中,y是指自由表面的流体高度。
Apppcation of Torricelp’s law
Figure 3: Apppcation of Torricelp’s law
托里切利定律的应用在我们的日常生活中很常见。这条定律的应用可以在水箱溢流期间看到。除此之外,在水坝中,当水从水坝中释放时,可以看到这一特定定律的应用(Gomez-Rojas等人,2021)。流体的速度方向是常见的。托里切利定律的应用也涉及到在恒定高度和恒定压力的情况下的简化条件。在消防车的工作过程中,也可以看到托里切利定律。
Conclusion
这个特殊的关系可以用不同的方式用公式来表述
v²/2 + gh p/ρ = constant
在这个公式中,v表示液体的流动速度,g表示施加到流体的重力加速度。在公式中,h表示流体在参考点上方的高度,ρ表示流体的密度,P相当于主要在液体容器顶部观察到的大气压力。在这个公式中,v等于0,因为将高度下降的液体表面与储罐中流体的速度进行比较。这里,h可以是0,这相当于在大气的特定点中的p。
FAQs
问题1托里切利定律的力学性质是什么
该定律的力学性质为Pa+(1/2)ρv12+ρgy1=P+ρgy2。在公式中,ρ表示密度,V表示速度。
问题2托里切利定律的方程式是什么
托里切利定律的方程为Vfx2=Vix2+2axΔx,其中流动流体的速度取决于水箱中流体的速度和高度。恒定的压力和重力加速度对速度有很大的影响。
Q.3托里切利定律中身高的实际值是多少
根据托里切利定律,高度的值等于零。大气压力也会影响流体的高度。
问题4托里切利的配方是什么
这个定律的公式是v²/2+gh p/ρ=常数。在公式中,ρ表示密度,V表示速度。