Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
Standing waves are created when two waves that are travelpng in the opposite directions, interfere with each other and are of identical frequency and ampptude.
This whole thing happens when those waves are superimposed and because of it either the energy of those two waves is added together or gets cancelled at all. A vibration rope that is tied at one end will produce the standing wave or normal mode.
What is a Standing Wave?
A standing wave is called the stationary wave. The standing wave simply defines the wave formed on a string that is formed with the superimposition of two waves of the same frequency and ampptude and travels in the opposite direction from each other (Wang et al. 2021).
A mass on a spring has a natural frequency that helps it to swing back and forth freely. However, a stretched string, which is fixed from one end will swing with a whole spectrum of frequency and has its own pattern of vibration. This kind of pattern in vibration is known as the standing wave or normal mode.
If an extended string is fixed from both ends and a continuous wave is tended towards the x-direction, the wave reaches the specific fixed end it reflects and comes back to the left ends (Ong, W & Zainulabidin, 2020).
As the left proceeding wave reflects and starts travelpng to the right part, the same cycle continues. It starts overlapping each other, and the ultimate result is in this process, there are too many overlapping waves that never stop overlapping each other (Muchomas, 2022). It forms two types of waves, longitudinal waves and transverse waves and together it creates the Standing waves.

Figure 1: Standing Wave
Equation of a standing wave
If it is considered as at any point that is u and time, and two waves are moving towards left and right, means the opposite direction on a string, and they have the same ampptude, frequency and wavelength (Ong, W & Zainulabidin, 2020). Using the trigonometric identities of sin (a + b) = sin (a) cos (b) + cos(a)sin(b) it can be written and the result can form a equation, that is - y(u,t) = A sin(ku - ωt) + A sin(ku + ωt) = 2A sin(ku)cos(ωt).
As the position and time dependency have been separated, the wave is no longer a travelpng wave (Wang et al. 2021). No energy travels alongside the string and it will show that one section of the string will swing with maximum ampptude while the other section does not even move. Here, it creates the standing wave or normal mode.

Figure 2: Formation of standing wave
What are nodes and antinodes?
The pattern of the Standing wave is characterised by the alternative pattern of nodes and antinodes.
Node
Node is a particular point in a standing wave where the wave has the minimum ampptude. It can be defined as all standing waves that are characterized by their position along with the medium that stands still (Ong, W & Zainulabidin, 2020).
When a crest meets the trough, it results in a node. At nodes, the ampptude is 0.
Antinode
Standing waves are also characterized by the Antinodes. The opposite of a node is an Antinode. Antinode creates when the crest meets a crest and a trough meets a trough (labman, 2022).
Antinode can be defined as the region of maximum ampptude that is situated exactly in between the adjacent nodes in a vibrating body or spring, which means a point that goes through the maximum number of displacements in the time of each vibration cycle of a standing wave.

Figure 3: The nodes and antinodes
Example of Standing Wave or normal mode
The best and simplest example of a standing wave is found in the waves produced by any stringed musical instrument, pke a plucked guitar string. This plucked guitar string discharges a particular sound frequency that depends on two things, they are the length of the string and how taut or dense the string is (Ong, W & Zainulabidin, 2020).
As only certain standing waves or normal modes can form on the string, as result, each string only makes a certain note. The effects of the standing wave can be seen in a drum too. If powder can be spread on the drum and then make it vibrate, one can check the appearance of a standing wave.
For a better understanding of Standing Wave or normal mode, it is easier to take the example of two people shaking each end of a jump rope (Ualberta, 2022). It will form a standing wave if they started shaking the rope in proper sync.
Conclusion
In short, generally, when two waves reflected or move from both ends produced an interference patterns that is the most comppcated and confusing one. However, an integral number of half of the wavelengths fits into the string’s length because the wavelength of the wave is just appropriate; it forms the Standing wave. The pattern of standing waves can be set up in almost any kind of structuration. However, when it is in 2D or 3D, it becomes away more comppcated. If one structure vibrates with all the fundamental frequencies then as a result it is shown that all the particles will swing in phase with the exact same frequency.
FAQs
Q1. Mention two examples of standing waves.
Standing wave can be found for sure in any kind of musical instrument that has strings. For example, in guitar, the easiest example of a standing wave is two people shaking each end of a jump rope.
Q2. What is called a normal mode?
Standing wave is also referred to as normal mode and formed through longitudinal waves and transverse waves.
Q3. How node and antinode does connected to standing waves?
The Standing wave pattern is characterized by the alternative pattern of one nodes and antinodes. The ampptude of a standing wave can increase without pmit until the structure face damage.
References
Journals
Wang, Z., Shen, Y., Liu, Q., & Fu, X. (2021). To unify azimuthally travepng-wave and standing-wave structured pght by ray-wave duapty. Journal of Optics, 23(11), 115604. Retrieved from:
Ong, W. S., & Zainulabidin, M. H. (2020). Vibration Characteristics of Beam Structure Attached with Vibration Absorbers at its Vibrational Node and Antinode by Finite Element Analysis. JSE Journal of Science and Engineering, 1(1), 7-16.Retrived from:
Websites
Muchomas (2022). About Standing waves/Normal modes, Retrieved from:
. [Retrieved on 17th June 2022]ualberta (2022). About Standing Waves; Normal Modes. Retrieved from:
[Retrieved on: 17.06.2022]labman (2022). About Standing waves. Retrieved from:
[Retrieved on 17th June 2022]physicskey (2022). About standing wave and normal waves. Retrieved from:
[Retrieved on 17th June 2022]