Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Curie Weiss Law
Curie-Weiss法是一个重要的法在物理电磁学的主题。Curi-Weiss法律指出,铁磁材料的磁化率大于居里温度点铁磁体的顺磁区。
有了这个特性,对象年代磁矩决定一块磁铁的转矩响应外部磁场的存在。磁性物质高于居里温度的时刻是随机的,确定净磁偏振或磁化等于零。
例子磁矩的电流回路,条形磁铁,一个电子,或一个分子。
Images Coming soon
磁化和磁偏振暗示诱导的密度或永磁磁性材料领域的向量的时刻。的小电流产生的自旋电子,原子核的自旋,或流动在一个原子的磁矩可以形成的结果。
净磁化是由外部磁场响应的材料。有时它甚至可以存在于外部磁场的缺乏。自发磁化强度等材料是冷铁的例子。还有一些其他的材料与相应的品质,如镍和磁铁矿,他们被称为铁磁物质。
铁磁物质的温度变成铁磁叫做居里温度。
What is mean by Curie?
放射性测量的单位居里。它有一个居里(Ci)的价值等于3.7×10 <一口> < /一口>衰变/秒。磁铁的点的温度改变他们的磁性特征称为居里温度。居里温度和居里点是来源于居里。
Curie Weiss Law Formula
韦斯居里定律的表达式或公式是制定如下:
X = C / T - Tc
在那里,
C是特定材料的居里,
T是绝对温度,
Tc是居里温度
磁矩总是依靠磁性材料在外部领域。磁矩是材料的磁场之间的关系和材料的绝对温度。
Limitations of Curie Weiss Law
居里维斯年代法律有许多假设和推断来计算其易感性。让我们处理的可信度居里维斯公式,可以写成:
$$mathrm{X:sim:1/(T-Tc)y}$$
,T > Tc是真的,但是居里温度Tc取而代之的是温度,你会得到一个价值高于居里温度Tc,这是错误的。
然而,这是广泛使用的公式无论限制。
Weiss Law and Ferromagnetism
在缺乏一个应用磁场磁化产生自发磁化的物质,有铁磁性的经验。铁磁物质的最常见的例子是铁、钴、镍以及一些合金铁磁特性。铁磁性的时刻发生在分子以正确的顺序是一致的。
对于铁磁性明显,铁磁转变温度(阈值温度)应该达到;温度可能高于1000 k等材料,如铁、钴、Gd等等。这种铁磁转变温度发生在缺乏外部领域当原子磁偶极子的相反的方向。
例如, 在铁、磁矩是诱导的旋转电子在原子核的外壳。泡利不相容原理说,不会两个电子自旋方向相同的地方。这将导致两个电子之间的排斥不合理。电子旋转相反的方向吸引与磁相互作用极化。的吸引力在电子旋转相反的方向,原子在铁可以互相结合。这可能是制定如下:
有效的分子字段提示,它依赖于磁化M级交换力的影响;
Hint = M --------------Equation (2)
磁化(M)可以用另一种方式和和磁化率的产物。
${chi p:ackslash s(H+lambda M)=M}$ --------------- Equation (3)
方程公式的基本思想是Curie-Weiss法方程。
Images Coming soon
Curie Temperatures of Some Ferromagnetic Substances
居里温度的铁磁物质有:
居里温度(Tc)的铁(Fe)是1043 k。
居里温度(Tc)的钆(Gd)是293 k。
居里温度(Tc)的镍(镍)是631 k。
Conclusion
Curie-Weiss定律是电磁学中的重要规则,定义为,在顺磁区,磁化率大于铁磁体的居里点温度(Tc)。这个温度是铁磁物质的温度在顺的地方。
在缺乏一个应用磁场,磁化产生的一种物质发生自发磁化的铁磁性。
$${chi p:ackslash s(H+lambda M)=M}$$
这个公式推导Curie-Weiss法方程的基本步骤。
FAQs
qn - 1。居里的常数值是什么?
答。居里的常数值是1.3047 k
qn 2。我们如何计算居里?
Ans。居里可以计算每秒的衰变速率除以3.7 x 10 <一口> < /一口>,结果等于1居里。
qn 3。居里和韦斯·居里温度之间的区别是什么?
答,居里温度(Tc)的温度敏感性物质喷发。
$mathrm{chi = C/T - Tc}$ and $mathrm{T sim Tc}$
另一方面,Curie-Weiss温度,适用于T > > T0,为一阶转换T0在居里温度附近。
qn 4。铁电相匹配的有效温度范围是什么Curie-Weiss法律?
答,在铁电材料对温度的依赖关系可以精确显示ε居里-维斯如下:
$mathrm{-varepsilon = varepsilon 0 +C/(T - T0)}$
在那里,
C是居里的常数和T0是连续波温度;一般来说,它不同于居里温度(Tc)
$ {varepsilon}时便成了峰值达到T0美元
在铁电材料、Tc = T0和相变是在二阶Tc和T0差别很大程度上第一批订单
qn 5。材料按照Curie-Weiss法律?
答。分享铁磁性质与铁的材料,如镍和磁铁矿,被称为铁磁铁。材料的居里温度变化,温度低于阈值。