Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
如果你曾经试着把瓶子倒置来取出蜂蜜,它会感觉很厚。这是由于蜂蜜的粘性很高。当从瓶子里倒番茄酱时,它需要更多的时间流动,并且需要额外的瞬时力(通过挤压或喷射)。这是因为番茄酱也很厚。但在这两种情况下,作用中的粘度并不相同。在第一种情况下,当只有重力作用时,存在运动粘度;在第二种情况中,当通过挤压施加外力时,存在动态粘度。现在让我们详细了解什么是粘度,运动粘度和动态粘度之间的区别是什么。它们的单位、代表性以及它们之间的关系。
What is Viscosity?
在流体(液体或气体)中,流动阻力(或摩擦)称为粘度。它是由于流体实体之间的相互作用而产生的。给定的温度和压力是给定流体的特征。粘度分为运动粘度和动态粘度两种。给定流体的粘度随温度的不同而不同。在液体中,它通常随温度增加,而在气体中,它随温度降低。从数学上讲,粘度是由给定的公式估计的
$mathrm{eta=frac{shear:stress}{velocity :gradient}}$
剪切应力是力与面积的比值。速度梯度$mathrm{frac{dv}{dx}}$是速度变化的速率。因此,公式由
$mathrm{eta=frac{F/A}{dv/dx}}$
$mathrm{eta=frac{F.dv}{A.dx}}$
其中$mathrm{eta=系数:of:粘度。}$
F is force and A is area.
$mathrm{frac{dv}{dx}}$ is velocity gradient.
What is Kinematic Viscosity?
当流体仅在重力作用下流动时,抵抗重力的流动阻力称为运动粘度。它取决于质量密度,即流体在流体体积上的质量。它被测量为在质量密度上的动态粘度。它只与流体在重力作用下的整体流动有关。
Units and Dimensions of Kinematic Viscosity
运动粘度的单位是$mathrm{m^2 sec^{-1}}$
CGS单位是stoke,目前仍在广泛使用:
$mathrm{1:stoke=10^{-4} m^2 sec^{-1}}$
$mathrm{1:stoke=10^{2} :centistoke}$
尺寸为$mathrm{[M^0 L^2 T^{-1}]}$
Representation and Formula for Kinematic Viscosity
运动粘度用希腊语字母“nu”表示。液体运动粘度的公式由下式给出
$mathrm{v=frac{mu}{ ho}}$
式中,¦=运动粘度
$mathrm{mu}$ dynamic viscosity
$mathrm{ ho}$ density of pquid
从上面的表达式中,我们观察到运动粘度是动态粘度与液体密度的比率。
What is Dynamic Viscosity?
它是剪切应力(单位面积的力)与速度梯度的比值。在流体经过固体表面的稳定流动中,在距离表面的极限距离内,速度随距离变化的速率称为速度梯度。它与流体在重力以外的外力作用下附近粒子之间的内部阻力有关。
Fig:2 Dynamic viscosity
Units and Dimensions of Dynamic Viscosity
动态粘度的SI物理单位是帕斯卡秒,CGS单位是泊(P),以Jean Poiseuille命名。
1 poise = 0.1 Pascal second
1 poise = 100 centipoise
动态粘度的尺寸公式为$mathrm{[M^1 L^{-1}T^{-1}]}$
Representation and Formula for Dynamic Viscosity
我们知道,动态粘度是一种帮助液体分子克服内部摩擦的力。因此,它相当于剪切应力与剪切速率变化的比值。
$mathrm{mu=frac{T}{Y}}$
其中$mathrm{mu}$是动态粘度
T is shearing stress
Y is a shearing rate change
Relation of Kinetic and Dynamic Viscosity with Density
动力学粘度由下式给出
$mathrm{v=frac{mu}{ ho}}$
我们观察到动力学粘度与密度成反比,这意味着如果密度增加,动力学粘度就会降低,反之亦然。
动态粘度由下式给出
$mathrm{mu=frac{T}{Y}}$
由上式可知,动粘度与动粘度成正相关,与密度成反比。这意味着动态粘度也与密度直接相关。
Apppcation of Viscosity
粘度的知识有助于我们了解哪种润滑剂或机油适合机器和发动机。
粘度系数用于计算有机液体的分子量。
它还在制药行业中发现了咳嗽糖浆等药物的制造应用。
粘度在涂料和清漆的制造中也起着重要作用。粘度系数也保持在其中,因此可以很容易地应用于墙壁。
这是选择食用油的一个特点,直接影响我们的健康。
粘度也可用于制造印刷油墨。
Conclusion
当我们谈论流体在重力作用下的整体流动时,运动粘度就发挥了作用。当我们谈论流体在重力以外的外力作用下相邻粒子之间的内部阻力时,动态粘度就发挥了作用。在本教程中,我们了解到粘度有两种类型,即运动粘度和动态粘度。以及这些与密度的关系及其在不同行业和我们日常生活中的应用。
FAQs
Q1.什么是绝对粘度
答:剪切应力(单位面积的力)与速度梯度的比值称为动态粘度。它也被称为绝对粘度。
Q2.运动粘度如何取决于温度
答:粘度取决于温度,温度的变化会改变流体的体积,从而改变流体的密度。从而改变给定流体的粘度。
Q3.运动粘度的意义是什么
答:运动粘度表示流体在恒定温度下,仅在重力作用下,在给定时间内流过给定区域横截面的特性。
Q4.动态粘度的意义是什么
答:动态粘度是指流体在除重力之外的外力作用下,在恒定温度下,在给定时间内流过给定区域横截面的特性。
问题5.什么是牛顿流体和非牛顿流体
答:对于理想流体,粘度在恒定温度下保持不变,即在恒定温度的剪切应力(或压力)下不会改变,就像水一样。但在番茄酱等非牛顿流体中,即使温度保持不变,其粘度也会在短时间内在剪切应力下发生剧烈变化。