Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Potentiometer is usually defined as a three-terminal resistor. This instrument has been generally appped for measuring the production of an adjustable voltage spanider while rolpng or spding contact. The primary apppcation of the Potentiometer is for the determination of the internal resistance of primary cells. In accordance with the theory of Thévenin, the power source can be acknowledged as a voltage source that can be ideal in series with impedance, usually termed as internal resistance.
Aim
The main of this experiment is to determine the internal resistance of a given primary cell with the help of a potentiometer.
Required apparatus
Among the required apparatus, the first requirement is a galvanometer. Voltameter, and potentiometer. The other requirements include a fractional resistance box, one battery, wires for the connection formation, and sandpaper (Batteryuniversity, 2022). Along with that, one must require two numbers keys that are of one way and one Leclanche cell. A jokey and one set square is required as well.
Principle
In order to conduct the experiment, it needs to be conjectured that a resistance that is represented by the letter R is connected across the e.m.f of a cell. The internal resistance of this cell is represented by the letter r. Based on this, the current of the circuit that is I will be equivalent to the E = I(R+r) that can be represented as the ratio of E and R+t, which will be equivalent to I (Ncert, 2022). This mathematical representation of the theory leads to get the equation that is V = IR = E - Ir or r= (E/V -1)R.
In addition, it can be conjectured that the distance between the balance null points from the end A is l0 whereas l will be representative of the difference between the open and closed circuit of the potentiometer (Castaño et al. 2018). In such a case, the E will be proportional to l0 and the l will be proportional to V. Therefore, the formed equation of this experiment can be mathematically represented as r= (l0-l/l) R.
Circuit diagram
Figure 1: Diagram of the circuit
In order to start the experiment, one needs to connect different electrical components as shown in the above figure that represents the diagram of the circuit. The key K1 is required to be closed after checking the connections of the circuits (Barai et al. 2018). The protective high resistance that is represented by the letter P will be found in the position of the balance point after opening K3.
In order to get the final reading, one must be required to close the k3 for creating short-circuit the resistance P that will help to find the value of balance length l0.
In such cases, the R will be found to be equivalent to the 10 Ω. For measuring the new valance length l, one needs to close the k2. However, the k2 is required to be opened soon after this measurement (Pamies et al. 2018). Throughput the above observation, the readings must be kept in the ammeter. In this experiment, if the value of R will be reduced in equal steps of the 1 Ω, each of the values of R will obtain the balance length l. In order to find the value of l0, at the end of the experiment, the k2 needs to be opened along with repeating the second step of the experiment.
Observations
Prior to the experiment, the value of l0 has been observed that must be found and represented with the unit of a centimetre. Therefore, it has been observed that the measurement of the e.m.f of the cell and the battery can also be determined through this experiment.
Sr. no | Corrected reading of Ammeter | Point of balance according to the E1 point of the circuit | Point of balance when E2 in the circuit | (E1/E2) = (l1/l2) |
---|---|---|---|---|
Table 1: Balance length
Calculation and Result
Figure 2: Graph between 1/R and 1/l
In accordance with the above figure, the value of Eq can be represented as the ratio of R and 1 that will be equivalent to l0/r*(1/l)-1/r. this will be the equation of a straight pne (Ncert, 2022). Taking the point l/1 on the x-axis and 1/R is positioned on the y-axis, the negative intercept on the y-axis will determine the value of 1/R hence, the value will be obtained is of r.
Conclusion
The present tutorial has focused on the representation of the experiment for determining the internal resistance of a primary cell along with the help of a potentiometer. Based on this main, the tutorial has included numerous sections where the required materials and the precautions have been explained. Furthermore, the tutorial has included the explanation of the diagram and the calculation part explains the mathematical representation of the theory as well. The principle that has been used throughout the experiment is E = I(R+r).
FAQs
Q1. What are some of the practical apppcations of potentiometer?
The practical apppcations of the potentiometer have included the machines pke audio controllers, motion controllers, television and transducers.
Q2. What is the principle of the potentiometer?
The min principle, based on which the work process of the potentiometer is conducted is of a constant current. The principle of the potentiometer suggests that in a wire, the fall of potential is determined to be directly proportional to the length of the wire.
Q3. What is the e.m.f of a cell?
The abbreviation of electromotive force is represented as the e.m.f. This particular terminology of physics refers to the difference in potential across the cell’s potential at a time when the cell is considered an open circuit.
Q4. What should be the order of the magnitude of the e.m.f of an auxipary battery?
It has been observed throughout the experience that the e.m.f of an auxipary battery is greater in comparison to the inspanidual cell.