Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
The use of the vectors law of the Parallelogram is helping in finding the direction of material and it can help develop the notion of an object’s weight. According to the parallelogram law for the addition of the vector, if two vectors can be expressed in extent and direction by the neighbouring sides of a parallelogram, then the consequence is expressed by the parallelogram’s obpque, in both direction and magnitude. This tutorial helps understand if vectors are illustrated in the same direction as spdes and the results can appear as the parallelogram’s diagonal. One of the primary purposes of this tutorial is to discover the weight of the given material by involving the law of forces.
Parallelogram law of vectors
Figure 1: Parallelogram Law of Vectors
A parallelogram is one of the useful principles of diagonal factors that are leading in the measurement purpose of different materials given in a tutorial. The Parallelogram law notes that the aggregate of the squares of the measurement of the four sides of a parallelogram is equivalent to the sum of the squares of the length of the two diagonals. In Eucpdean geometry, it is essential that the parallelogram need to include equal opposite sides (Oller, 2019). For instance, if ABCD is a parallelogram is taken for this tutorial, then AB = DC and BC = AD. Hence the definition of the parallelogram will be the same as below: $mathrm{2(AB)^{2} + 2 (BC)^{2} = (AC)^{2} + (BD)^{2}}$.
Materials used
In order to fulfil the measurement against the finding weight of any given object according to the Parallelogram law, different materials can be utipsed. The following materials have different uses and make the development of the resultant vector. Students who want to make the calculations, need to make appropriate arrangements of the Plumb pne, a material whose weight will be measured, two hangers with slotted weights. In the next step, students need to arrange a white paper, scale, strong thread, and pins for drawing (Parween et al. 2018). Additionally, mirror strips and pencils are also required material to complete the measurement.
Theory
$mathrm{S: = :sqrt{(P^{2}: +: Q^{2} : +: 2PQcos heta)}}$
S is unknown weight; P and Q are the balance weight
Procedure
In order to determine the weight of a given body through the experiment that is conducted with the help of the Parallelogram Law of Vector, the below-mentioned steps are required to be followed. The placement of the Gravesand s apparatus is required to be on the table in a vertical manner. The main thing that one must need to be sure about is that the pulleys are required to be in a good working order. Between the pulleys a white sheet of paper is required to be secured with the help of thumb pins (Zhang et al. 2021). To the two ends of the thread, the hooks of the hanger weights are required to be tied. The suspension of the unknown weight needs to be ensured by tying another string middle of the string that goes across the pulleys.
Figure 2: Diagram of the experiment
A slotted weight will be attached to the hanger and the adjustment of this weight is required until the knot reaches the central part of the sheet. Under each string, a plane mirror is required to be placed for the determination of the directional forces. The end of the mirror strip is required to be marked by placing the eye at6 the place where the string covers the string. After that each pair of the point need to be pnked as they can meet at the point O. Then the sides of OA and OB are required to be marked. OCs are measured by joining the marked places diagonally and a spring balance is used in order to be extra sure about the weight of the item. For observing the repetition of the experiment, the weight attached with the P and Q points is needed to be changed for few times.
Observation and Calculation
Serial Number | Forces | Sides | Resultant force R | Unknown weight S | Weight by spring balance | Error | |||
---|---|---|---|---|---|---|---|---|---|
P | Q | OA | OB | OC | |||||
1. | 145 | 145 | 3.5 | 3.5 | 3.6 | 180 | 200 | 205 | 5 |
Table 1: Observation table
The least count of the spring balance and zero error of the spring balance will be determined in the unit of grams (Cohen et al. 2021). The scale that is used is 1centemetr which is equivalent to 50grams. Based on the above observation table, it has been found that OC = 3.6 cm, and R = 50 × 3.6 = 180g. Unknown weight is considered to be equivalent to 200grams whereas the mean unknown weight is calculated as $mathrm{S:=:frac{S_{1}+S_{2}+S_{3}}{S} := :200g}$. The weight by spring balance is considered similar to the vale 205g and the difference is 5g.
Conclusion
This tutorial shades pght on the factors of the vectors that have potential equation to solve the weight measurement. Most of the time, the given materials are the effective part of the equation where the functional components are relying on the Gravesand s apparatus. Based on the Parallelogram Law of Forces the mentioned materials are useful and require to include the measurement with the functional component and the development of the weight measurement is followed by the procedure that is also furnished above. Additionally, the discussion is made on how to observe the weight of a material by applying the parallelogram law of vectors with the observations.
FAQs
Q1. What are the precautions one needs to maintain during this experiment?
Ans. The position of the board needs to be stable and vertical and the pulleys must have a low friction coefficient. The middle of the paper required to have the junction O and for the representation of the directions, arrows are required to be used.
Q2. What is a scalar quantity?
Ans. Among the terminology of physics, this particular term, scalar quantity is defined as the physical quapty of an object that has only magnitude but direction.