Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
该部门的磁感应CGS技术是高斯。高斯操作来解释磁场的强度。它是德国物理学家卡尔·弗里德里希·高斯后指定。这个角色G表示提到CGS技术的价值。< / p >
特斯拉和高斯都是用于评估时的磁感应应用磁性粒子穿过一个字段。< / p >
在本教程中,一个适当的阐述了研究生院理事会和特斯拉技术的应用。
Figure 1: Magnetic Field
What Is Gauss?
高斯定律代表更好的理解之间的物理关系的费用包含在封闭的表面的电通量(Sciencefacts, 2022)。导体的表面可以指出只有他们的指控是固体。为了测量电场的值选择在一致性和径向外部要求是一致的。在同一个方向,组件可以被添加到估计电动的对称电感器。计算电动势是包括对称磁通。
Figure 2: Gauss’s Law
所有的磁铁通常认为高斯的表征。字符G是用来证明这个部门的测量计算磁通厚度或磁力感应。
What is Tesla?
特斯拉是一个法定单位的接受身体的不同的标准,获得与磁场相互作用。这个测量单元是用于物理理解对象的磁感应率。系统遵循的SI单位米千克第二系统。
microtesla(μT)表达与磁场(Radiopaedia, 2022)。屈服强度一牛顿的权力(N)安培(A)有助于理解目前每米的导体。
Apppcation of Tesla
放射学测量和磁场频率在卫生部门是最常见的用例在卫生保健。此外,经典科学单元备忘录用于开发测量单位符号的数量。此外,1.2 T超高场磁共振在7保持最近批准临床使用的人类,甚至更高领域的优势多达17 T是临床前反思的。大多数时候,1.5特斯拉用于MRI机器来检测任何疾病。
Gauss and Tesla Relationship
高斯闻名的代表研究生院理事会单位和它的特点是G由特斯拉取代国际单位制。磁场线的绝对数量通常是通过通过一个给定的位置是理解为该地区的磁通由h .象征着现在,磁通量的数量,采取垂直于磁通的建议,通过单位面积被理解为磁通的厚度和b所示单位磁感应高斯或特斯拉依赖定向测量技术。高斯和特斯拉是互补(Sciencedirect, 2022)。因此,磁通密度表示的字符B提供的是连接到一个磁场H - B = H。因此,为了计算目的,通常注意到10000高斯正好等于1特斯拉。单位都是直接相互对称测量磁场强度的发展。
Figure 3: Tesla Law
Conversion between Gauss and Tesla
的应用系统的三维单元被称为厘米克秒制成功的关键特性的测量。高斯成为有用的在实际生活中的应用做出正确准确的磁通密度的测量。这也似乎高斯可以使用的单位只代表克,厘米,第二。此外,国际标准单位的应用可以代表相同的磁通密度的估值使用特斯拉。单位测量可以表示通过应用第二,千克,和米。这似乎很容易复制的单位转换的数量从高斯特斯拉,甚至可以亦然。因此,1特斯拉= 10000高斯(克利夫兰 et al。 2020)。这个公式的数学表示可以当作1特斯拉= 10 <一口> 4 < /一口>高斯。
Conclusion
在本教程中,磁场的方向是由应用程序不同的测量系统,相互成正比。在大多数情况下,基于用例,计量单位可以表示为不同的表达式。管理评估可以被称为一个磁场方向的过程。电导体,有很多种不同的方法来验证电导体,可以通过改变磁场(《生活科学》,2022)。转换的执行单位的高斯特斯拉或亦然是可能获得更好的理解和知识。
FAQs
Q1。高斯定律是什么?
Ans。最大的用例,CGS单元应用于测量磁归纳运用高斯定律。
Q2。要求单位之间的转换是什么特斯拉和高斯?
答。特斯拉磁感应而闻名,而高斯遵循厘米克秒制测量磁场的强度。测量高斯的维度所使用的应用程序是用三维的。这是相当容易计算,而特斯拉的七个维度。
第三季。特斯拉的意义是什么?
答,特斯拉的标准单位总是接受测量磁场的感应。因此,有用的SI单位遵守标准单位。1单位特斯拉等于1000高斯。