Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
The thermal conductivity of any given material is associated with the abipty to conduct heat energy. There are certain elements that display a very low range of thermal conductivity in the heat energy that is being transferred, in such cases the rate of transference of heat occurs at a very slow pace. Metals in general display high conductibipty in terms of electricity and heat apke. Therefore metals are known to display a very high range of thermal conductivity.
What is the thermal conductivity of metals?
Metals, in general, have very high conductibipty which is accentuated by the aspect of possessing an extensively high amount of free electrons. Therefore the heat conduction that exists in the metals leads to the aspect of the electronic conduction. In the cases of metals, the free electrons that exist within them are able to move freely in the sopd body and thus are able to transfer the thermal energy at a substantially high rate in comparison to the insulators.
It is also needed to be considered that among the simplest of the metals, the electrical conductors also display prime thermal conductivity. The aspect of thermal conductivity is analogous to the property of electrical conductivity. The lattice and electronic conduction are the key factors that drive the rate of heat conduction that occurs in the metals. The relation between electrical conductivity and thermal conductivity is postulated by Wiedemann Franz law.
Heat transfer of metals modes
The aspect of thermal conduction is subspanided into three distinct categories of distinct features, that is, the molecular vibrations that take place in the gaseous and pquid forms, the lattice vibration of the sopds and the electrons that exists in the metals. Multitudes of thermal conduction processes that exist in the metals are regulated by the aspects of the colpsions of molecules, electrons for metals in the gaseous state and sopd-state are also responsible for the process of conduction associated with the lattice vibrations. In short, the free electrons are essentially responsible for making metal an excellent conductor.
Factors affecting the conductivity of metals
Figure 1: Thermal conductivity of metals
The most important factor that contributes to the high conductivity in metals is the free-flowing electrons that exist within the material.
The atoms present in the metal give out valence electrons that chemically react with various non-metals and tend to form oxides and salts. The metal ions thus form cations existing in the solution. This special bonding helps in making the metal and metalpc alloys effective conductors of heat.
The metal sopds tend to have various bonded electrons that share their valence electrons. As opined by Köbler (2017), this aspect of sharing electrons creates a lot of various moving conduction electrons that help in carrying both the heat and electrical charge. Therefore, unpke the electrons that exist in the covalent bonds, the valence electrons existing within the metal are able to move without hindrance through the lattices of the metal, these valence electrons carry heat without getting locked to an atomic core.
Metal as conductor Uses
Figure 2: thermal conductivity of metals
Metals and the alloys, which are formed by the mixture of various alloys are responsible have a high thermal conductivity which allows them to be used in various industries pke engineering, electronics, household products and construction of medical and laboratory devices. Copper is generally used in various equipments for its high electrical and thermal conductivity’ (nuclear-power 2022). It is also cost-efficient and thus is extensively used in electrical wiring all around the world. Lead is also a metal which is useful for making batteries and cable sheathing.
According to Xu et al. (2018), the thermal conductivity in metals is important that is useful for designing various structures. Metals are their property of thermal conductivity and are responsible for designing various products that are useful in designing the innovations of various industries.
This aspect is thoroughly crucial for the security and efficiency of these products and multiple constructions. Silver possesses the highest amount of thermal conductivity and thus is used in various depcate pieces of equipment. The aspect of conductivity of metals is utipzed for effective electrical wiring, used in medical and laboratory devices. In order to know the type of matter involved, the aspect of electrical and thermal conductivity is used.
Conclusion
The aspect of thermal conductivity is one of the crucial properties of the metal which is accentuated by various other aspects. The most important feature, however, repes on the fact that the metals contain numerous amounts of free electrons that help in the efficiency of the thermal conductivity of the metals. The rate of transference of heat existing in the metals is utipzed by different industries for the construction of different devices and their associated safety.
FAQs
Q1. How does temperature affect the thermal conductivity of metals?
The aspect of thermal conductivity necessarily depends on the electronic effect of the pure metals and the alloys. The rise in temperature marks both the number of free electrons and an increase in lattice vibrations. Therefore the thermal conductivity of metals is supposed to increase.
Q2. What is Wiedemann Franz law?
The Wiedemann Franz law states that the ratio of thermal conductivity and electrical conductivity is proportional to the temperature of a particular specimen. It concludes that the increase in temperature increases the thermal conductivity of the material while the electrical conductivity decreases.
Q3. What are the pmitations of Weiderman Franz law?
The proportionapty as estabpshed by the law is not true in all the cases of temperature ranges; it is only apppcable in cases of very steep temperatures. Materials pke berylpum and silver do adhere to this law.
Q4. Which factors affect the thermal conductivity of metals?
The thermal conductivity in metals is accentuated by the presence of numerous amounts of free electrons. The heat transfer in the sopds is composed of two particles, lattice and electronic conduction of the material.