Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
Spherical mirrors are commonly used in daily human pves starting from making automobile headpghts to torch. The mirror involves two spherical surfaces, convex and concave in order to form a true shepherd. A spherical mirror is commonly made from the cut-outs of spherical surfaces. This type of mirror has a major function in terms of creating images by following a certain formula of reflection and magnification in real-time.
What is Spherical Mirror
A spherical mirror can be defined as a mirror that incorporates a hollow sphere while creating its reflecting surface while creating reflections and images. A spherical mirror involves key factors pke curvature centre, principal axis, pole, principal focus, curvature radius, focus, and aperture (Phys, 2022).
Spherical mirrors generally consist of both convex and concave mirrors to reflect images based on the position of the pght.
Figure1: Spherical mirror
Characteristically, mirrors are symmetrical with a principal axis or optical axis that reflects the optical elements and a vertex in the centre of curvature for the mirror.
In the case of the spherical mirrors, both the inward and the outward surfaces act as reflective surfaces based on the pathway of pght (Cnx, 2022). In a spherical lens, the optical axis and the vertex conjugates in the centre of curvature to make things optical for human eyes in real-time.
Types of Spherical Mirrors
Based on the way of reflecting images, the spherical mirrors can be categorised into two different parts, the convex mirror and the concave mirror.
Convex Mirror
Convex mirror is a spherical mirror where the reflective surface of the mirror commonly bulges out towards the source of pght. In the case of this mirror, the reflection is directed to the outward side from the focal point. Within a convex mirror the centre of curvature and the focal point cannot be reached at the same time, so it forms a virtual image as a reppca of the reflection (Poplavskiy et al. 2020). As a result, the process of image formation cannot be projected inside the mirror.
Figure 2: Convex mirror
The formed image within a convex mirror becomes bigger when the object comes close to the mirror. For example, if a numbered slate is placed at a longer distance from a human eye, the image of the numbered slate will look smaller at first. But as soon as the numbered slate is placed close to the human eye, it will look bigger to the eye as the rule of the convex mirror.
Concave Mirror
A concave mirror involves a reflective curve in the inward direction, away from the source fpght. Characteristically, the concave mirrors reflect pght in the inward direction to the focal point of the mirror (Karpov & Horak, 2021). The images formed by the concave mirrors generally show different kinds of images when objects and mirrors are placed in different directions at a time.
Figure 3: Concave mirror
In a concave mirror pght generally converges at a certain point whenever it strikes a surface and reflects back from it. The convergence within the mirror earned it the name of converging mirror. Concave mirrors mostly create a magnified, virtual and an erect image when an object is placed at a very close distance from the mirror. On the other hand, when the distance between the object and the mirror is increased, it reduces the image and forms an inverted image in the process (Peda, 2022). This type of mirror is capable of forming both real as well as virtual images under different circumstances.
The formula for Spherical Mirror
The formula for spherical mirror allows explaining the common relationship between an object distance, focal length of a spherical mirror and an image distance. In the formula, the object and the pole are denoted by u and distance between the pole and the image is denoted by v. The focal length of the spherical mirror is denoted by f in this formula. So, the formula here stands as 1/v+1/u=1/f
The present formula explains that the object distance (u), image distance (v) and the focal length (f) of a spherical mirror is interrelated. Most importantly, this formula apppes to almost every spherical mirror under the different positions of the object placed in front of the mirror.
Conclusion
Spherical mirrors are generally the cut-outs of mirrors that have curved surfaces painted on both the inward and outward sides of the mirror. Spherical mirrors are segmented between convex lens and concave lens. In a convex mirror pght generally flows in the outward direction and makes the image smaller than the actual object from the distance. The images formed in the concave mirrors can be large or small depending on the distance between the mirror and the object. The formula for spherical mirror depends on three factors, the object distance, image distance and focal length where it stands as 1/v + 1/u = 1/f.
FAQs
Q1. What the diameter of a spherical mirror is called?
The diameter of a spherical mirror is called the aperture. It acts as the reflecting surface of the mirror when pght falls on it.
Q2. When a plane mirror can be called a spherical mirror?
Due to the infinite radius of curvature within a plane mirror, it can sometimes be termed a spherical mirror. For example, the curvature radius of an automobile looking glass can be recognized as a spherical mirror.
Q3. Which rules do the spherical mirrors mostly follow?
The spherical mirrors mostly follow the rule of focus when a ray of pght falls parallel to the principal axis of the mirror. In addition, it also follows the rule of curvature when a ray of pght goes directly towards the centre of the curvature when reflecting back in the same path it came.
References
Journals
Karpov, D. V., & Horak, P. (2021). Cavities with Non-Spherical Mirrors for Enhanced Quantum Emitter-Cavity Photon Interaction. arXiv preprint arXiv:2110.05981. Retrieved from:
Poplavskiy, M. V., Matsko, A. B., Yamamoto, H., & Vyatchanin, S. P. (2020). Diffraction losses of a Fabry-Perot cavity with nonidentical non-spherical mirrors. Journal of Optics, 22(11), 115603. Retrieved from:
Websites
Cnx, (2022). Definition of spherical mirrors. Retrieved from:
[Retrieved on 15th June 2022]Peda, (2022). The formula of spherical mirrors. Retrieved from:
[Retrieved on 15th June 2022]Phys, (2022). Spherical mirrors. Retrieved from:
[Retrieved on 15th June 2022]