Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
电和磁最初独立的学科。电力有关的指控和磁学与磁性材料。然而在19世纪丹麦物理学家奥斯特证明这两个之间有关系。他发现,电流可以创建一个磁场。
迈克尔·法拉第英国科学家报告了一个有趣的实验现象。他发现,如果我们移动一块磁铁线圈连接到一个电流计,我们看到偏转。
电路中通过的电流的存在在这种情况下意味着一个电动势会引起电路中,当我们改变它周围的磁场。这种现象叫电磁感应。感生电动势的数量是由法拉第定律。它说的变化率等于磁感生电动势的电路。然而,如果我们想知道电路中电流的方向诱导由于电磁感应,我们使用另一个法律。它被称为楞次定律。
What is Lenz s Law?
1834年,埃米尔楞次俄罗斯物理学家了一项法律,帮助我们获得感应电流的方向。它被称为楞次定律。
它说,如果一个电流感应导体内还将创建一个磁场。电流的方向将是这样形成的磁场将反对改变诱导它。为了更好的理解,让我们以一个例子。
MikeRun, Lenzs-law-cypndrical-magnet-leaving-ring, CC BY-SA 4.0
Fig:1 Illustration of Lenz’s law
假设有一个圆形导体,如上图所示。酒吧磁从左边接近它。移动的条形磁铁将导体中产生电流。我们可以看到,当前创建一个磁场顺时针和原磁场由于条形磁铁是逆时针方向。因此,由于感应电流磁场相反的感应电流的来源。
The Formula for Lenz s Law
楞次定律说,当前或emf将会反对磁通量的变化因为磁通量的变化是这个感应电动势的原因。如果磁场是由 ,和磁通量美元mathrm{φ_ {b}} $。然后
$ $ mathrm {e = -Nfrac {dphi _ {B}} {dt}} $ $
N = no。的循环
dt =时间变化量
这里负号是至关重要的,因为它告诉我们方向。“反对”这个词包含的迹象。如果我们想只感应电动势的大小,我们可以这样写
$ $ mathrm e{左| |飞行propto压裂{dphi _ {B}} {dt}} $ $
What is Induced EMF?
当导线的磁通量发生变化时,emf被诱导。它被称为感生电动势。假设有一个线圈N循环,慢慢旋转的磁场中,然后emf将诱导。感应电动势的数量可以由法拉第定律。如果磁场b ,和通量dphi变化时间 dt 。然后感应电动势
$ $ mathrm {e = n压裂{dphi _ {B}} {dt}} $ $
Experiment with Lenz s law
楞次制定他的法律理论。他的理论由以下三个实验证明。
Keministi, Lenz law demonstration, CC0 1.0
First Experiment
在第一个实验中,当电路中通过的电流,磁场被创建。当我们增加电流、磁通量增加自磁场取决于当前。目前反对任何磁通的变化。
Second Experiment
在第二个实验中,他发现,如果我们把一个通电导线,伤口一个铁棒,那么它像北极的一端,它吸引了磁铁的南极。因此一个感应电流生成。
Third Experiment
在第三个实验中,当线圈磁通的方向拖,领域内的线圈的面积减少。楞次定律告诉我们,如果我们应用感应电流方向相同线圈的运动是反对。
为此,在线圈磁场施加一个力。反对,磁力施加的电流线圈的磁场。
Apppcations
它是用于以下方面。
读卡器、麦克风和交流发电机。
它告诉我们磁能存储在电感器。
这个概念用于金属探测器和烘干系统的列车
它给的物理理解符号出现在法拉第的配方。
它是用于涡流测功和平衡。
Conclusion
电磁感应现象在通量变化时创建一个emf导体。感应电动势的数量可以由法拉第定律。感应电动势的方向或当前是由楞次定律。它说感应电动势的方向,它反对任何改变引起通量。在许多技术应用是有用的。几乎在每个地方,可以看到其突出所使用的电磁感应现象。
FAQs
Q1。守恒定律证明了楞次定律?
答,楞次定律是能量守恒的直接后果(电)。
Q2。线圈的磁通是由美元mathrm{φ_ {B} = B_ {0}: sinomega t} $,找到感应电动势的表达式。< / B >
答。我们知道,感应电动势是$ mathrm {e = n压裂{dphi _ {B}} {dt}} $
$ $ mathrm {e = n压裂{d} {dt} (B_ {0}: sinomega t) = -NB_{0}:{ω}因为ωt} $ $
第三季。圆环半径为10厘米的平行于磁场。磁场的变化从200年的35吨- 60吨。找到感应电动势的大小。
Ans,鉴于美元半径mathrm {r = 10 ime 10 ^ {2} m} $
美元的磁通量mathrm{φ_ {B} = Bpi r ^{2}} $,因为B和相互平行。
$ $ mathrm{感生电动势:左| e锁定宽和高| =压裂φd {} {dt} _ {B} =压裂{d} {dt} (Bpi r ^ {2})} $ $
$ $ mathrm{=πr ^{2}压裂{dB} {dt} =πr ^{2}压裂{(B_ {2} -B_ {1})} {t}} $ $
$ $ mathrm{左| e锁定宽和高| =πr ^{2}压裂{25}{200}=π(10 ^ {2})(0.125)}$ $
$ $ mathrm{左| e锁定宽和高| = 0。3925 ime 10 ^ {2} V = 3.9 mv} $ $
第四季度。感应电动势,有必要应该改变磁场?
Ans。不,磁场也不需要改变。净磁通应该改变。例如,可以有磁场的情况并没有改变但面积向量可能改变。即使在这种情况下,我们可以得到感应电动势。
Q5。是什么类型的归纳,简要描述。
答,感应可以两种类型
互感:-在这种感应,我们需要两个线圈附近和在一个线圈磁通量的变化会导致另一个的感应电动势。
自感:——在这种感应,我们只需要一个线圈。这里线圈本身诱发emf反对当前的强度的变化。