Atoms
Celestial Bodies
- Space Travel Equipment
- Stars
- Rotation and Revolution
- Relation Between Escape Velocity And Orbital Velocity
- Dwarf Planets
- Difference Between Solar Eclipse And Lunar Eclipse
- Difference Between Equinox And Solstice
- The Escape Velocity Of Earth
- Solar System
- Difference Between Stars And Planets
- Difference Between Asteroid And Meteoroid
- Constellations
Circuits
电路 (diàn lù)
电路 (Diànlù)
电路
通信系统Pdf
二极管
地球科学
电荷
电
- 类型的齿轮
- 电子产品在日常生活中
- 类型的汽车
- 类型的直流电机
- 类型的交流电机
- 晶体管工作
- 转矩电流环
- 电动机
- 电阻温度依赖性
- Rms值交流电
- 电抗和阻抗
- 相量表示法交流
- 平行板电容器
- 焦耳定律
- 电力
- 磁场对载流导线的影响
- 电流密度
- 导体绝缘体
- 导电
- 碳电阻器
- 直流发电机
- 类型的发电机
- 类型的电流
- 直流发电机类型
- Torque On Dipole
- 电流的热效应
- 电动发电机
- 静电
- 电阻率不同的材料
- 电场的物理意义
- 介电常数和磁导率
- 电能和权力
- 电流在导体
- 电动汽车
- 位移电流
- 电阻与电阻率之间的差异
- 电动机和发电机之间的区别
- 接地和接地之间的区别
- 电流线圈
- 水的电导率
- 导电的液体
Electricity
电磁波
电磁
静电学
能量
- 能量
- 能源类型
- 热能
- 太阳能项目
- 太阳能汽车
- Ev和Joule之间的关系
- 动能和完成的功
- 能量转换
- 一维和二维的弹性和非弹性碰撞
- 常规能源和非常规能源
- 太阳能炊具
- 潮汐能
- 能源
- 太阳能和光伏电池
- 动能与动量的关系
- 热量与焦耳的关系
- 能源及其对环境的影响
- 能源考虑
流体
武力
Force
摩擦
万有引力
热
动力学理论
光
- 镜面反射漫反射
- 人眼
- 结构人眼功能
- 阴影的形成
- 反射和折射之间的区别
- 相干源
- 光的透射、吸收和反射
- 透明半透明和不透明
- 阳光白色
- 单狭缝衍射
- 拉曼散射
- 粒子自然光光子
- 真实图像与虚拟图像的区别
- 衍射和干涉的区别
磁性
运动
- 运输历史记录
- 速度-时间图
- 旋转动能
- 刚体和刚体动力学
- 扭矩和速度之间的关系
- 粒子的直线运动
- 周期性运动
- 动量和惯性之间的差异
- 动量守恒
- 运动测量类型
- 扭矩
- 慢速和快速运动
- 滚动
- 刚体平移运动和旋转运动
- 相对速度
- 径向加速度
- 速度和速度之间的区别
- 动力学和运动学的区别
- 连续性方程
- 线性动量守恒
自然资源
核物理学
光学
Optics
- Reflection of Light and Laws of Reflection
- Concave Lens
- Total Internal Reflection
- Thin Lens Formula For Concave And Convex Lenses
- Spherical Mirror Formula
- Resolving Power Of Microscopes And Telescopes
- Refractive Index
- Refraction Of Light
- Refraction Light Glass Prism
- Reflection On A Plane Mirror
- Reflection Lateral Inversion
- Rainbow
- Photometry
- Difference Between Simple And Compound Microscope
- Difference Between Light Microscope And Electron Microscope
- Concave Convex Mirror
- Toric Lens
- The Lens Makers Formula
- Simple Microscope
Oscillation
Pressure
- Thrust Pressure
- Relation Between Bar And Pascal
- Regelation
- Sphygmomanometer
- Relation Between Bar And Atm
- Difference Between Stress And Pressure
Quantum physics
- Quantum physics
- Rydberg Constant
- Electron Spin
- Casimir Effect
- Relativity
- Quantum Mechanics
- Electrons And Photons
Radioactivity
- Relation Between Beta And Gamma Function
- Radioactivity Beta Decay
- Radioactive Decay
- Stefan Boltzmann Constant
- Radioactivity Gamma Decay
- Radioactivity Alpha Decay
- Radiation Detector
Scalars and Vectors
- Scalars and Vectors
- Triangle Law Of Vector Addition
- Scalar Product
- Scalar And Vector Products
- Difference Between Scalar And Vector
Scientific Method
- Scientific Methods
- Safety Measures Technology
- Difference Between Science And Technology
- Scientific Investigation
Semiconductors
- Semiconductor Devices
- Junction Transistor
- Semiconductor Diode
- Difference Between Npn And Pnp Transistor
Solid Deformation
- Solid State Physics
- Solid Deformation
- Stress
- Shear Modulus Elastic Moduli
- Relation Between Elastic Constants
- Elastic Behavior Of Solids
- Tensile Stress
- Stress And Strain
- Shearing Stress
- Elastomers
- Elastic Behaviour Of Materials
- Bulk Modulus Of Elasticity Definition Formula
Sound
- Sound waves
- Timbre
- Speed Of Sound Propagation
- Sound Waves Need Medium Propagation
- Sound Reflection
- Sound Produced Humans
- Doppler Shift
- Difference Between Sound Noise Music
- The Human Voice How Do Humans Create Sound With Their Vocal Cord
- Sound Vibration Propagation Of Sound
- Sound Produced Vibration Object
- Reverberation
- Doppler Effect
System of Particles and Rotational Dynamics
Thermal Properties of Matter
- Thermal Properties of Materials
- Thermal Stress
- Thermal Expansion Of Solids
- Thermal Conductivity Of Metals
Thermodynamics
- Statistical Physics
- SI Units List
- Statistical Mechanics
- Reversible Irreversible Processes
- Carnots Theorem
- Temperature
- Kelvin Planck Statement
- Difference between Isothermal and Adiabatic Processes
Units and measurements
- Density of Air
- The Idea Of Time
- Difference Between Pound And Kilogram
- Difference Between Mass And Volume
- Dimensional Analysis
- Density Of Water
- Time Measurement
- Standard Measurement Units
- Relation Between Kg And Newton
- Relation Between Density And Temperature
- Difference Between Mass And Weight
Waves
- Space Wave Propagation
- Sharpness Of Resonance
- Relation Between Group Velocity And Phase Velocity
- Relation Between Amplitude And Frequency
- Periodic Function
- P Wave
- Destructive Interference
- Transverse Waves
- Travelling Wave
- Standing Wave Normal Mode
- S Waves
- Relation Between Frequency And Velocity
- Reflection Of Waves
- Phase Angle
- Period Angular Frequency
Work, Energy and Power
- Derivation Of Work Energy Theorem
- Conservation Of Mechanical Energy
- Relation Between Work And Energy
- Destruction Caused Cyclones
Physics Experiments
- Determine Resistance Plotting Graph Potential Difference versus Current
- To find the weight of a given Body using Parallelogram Law of Vectors
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between p and v
- To measure the thickness of sheet using Screw Gauge
- To find the value of V for different U values of Concave Mirror find Focal Length
- To find the Surface Tension of Water by Capillary Rise Method
- To find the Resistance of given wire using Metre Bridge and hence determine the Resistivity of its Material Experiment
- Determine Mass of Two Different Objects Using Beam Balance
- Tracing the path of the rays of light through a glass Prism
- Tracing path of a ray of light passing through a glass slab
- Tornado Bottle
- To find image distance for varying object distances of a convex lens with ray diagrams
- To find force constant of helical spring by plotting a graph between load and extension
- To find focal length of concave lens using convex lens
- To find effective length of seconds pendulum using graph
- To find downward force along inclined plane on a roller due to gravitational pull of the earth and its relationship with the angle of inclination
- To draw the IV characteristic curve for p n junction in forward and reverse bias
- To determine Young’s modulus of elasticity of the material of a given wire
- To determine the internal resistance of a given primary cell using a potentiometer experiment
- To determine the coefficient of viscosity of given viscous liquid by measuring terminal velocity of given spherical body
- To determine specific heat capacity of given solid by method of mixtures
- To determine radius of curvature of a given spherical surface by a Spherometer
- Scope and Excitement of Physics
- Rocket science
- Relationship between frequency and length of wire under constant tension using Sonometer
- To determine equivalent resistance of resistors when connected in series and in parallel
- To convert the given galvanometer of known resistance and figure of merit into a voltmeter of desired range and to verify the same experiment
- To determine minimum deviation for given prism by plotting graph between angle of incidence and angle of deviation
- To compare the emf of two given primary cells using potentiometer experiment
Introduction
The sharpness of resonance is clearly stated better by comprehending resonance. Resonance in physics is extremely crucial where the ampptude rises with the frequencies of excitation and the tendency of the system also rises. The sharpness of the Resonance is high when the ampptude is less and a rise in damping means maximisation of the sharpness of the resonance. In the physical world, resonance has many types including mechanical resonance, acoustic resonance and electrical resonance. The sharpness of resonance is demonstrated by the definition of resonance where the resonance tends to be sharp at the point of time. Swing is a great instance of mechanical resonance.
What is resonance and sharpness of resonance?
Resonance is defined as the large chosen response of the system or material that vibrates in phase or step with an external apppcable force of oscillation. It is illustrated as the system s tendency to swing back and forth at the highest ampptude at minimal frequencies in comparison to the others (Alwahib, Al-Rekabi & Muttlak, 2020). Resonance is known to be extremely crucial as the circuit can either dissipate or absorb the maximum energy amount at the resonance. One of the practical instances of resonance is utipsed in radio receivers.
Figure 1: Sharpness of resonance
"Sharpness of resonance" mainly repes on two factors including ampptude and damping. The "sharpness of resonance" is concerned with the factor of Q of the "RLC" circuit. It featured how rapidly the energy perished in the circuit of RLC that is attached to the alternating voltage (Lim et al. 2019).
(ω0/2Δω) quantity is reflected as the calculation of resonance’s sharpness. It is demonstrated from the fact that resonance is narrower or sharper if the Δω is smaller. 2Δω is demonstrated as the bandwidth and ω0 is the frequency of resonance in "Sharpness of resonance".
Ampptude in resonance s sharpness is illustrated as the wave height which is shifting in constant motion (Shahryari et al. 2021). Damping is demonstrated as the impact in which the wave’s ampptude is minimised with time.
Illustration of Q factor
The Q factor in the sharpness of resonance is known as the quapty factor which does not possess any dimensions. The q factor is utipsed to feature the centre frequency and resonator’s bandwidth and the underdamped resonator. The mathematical form of the Q factor in "Sharpness of resonance" is Q = Estored/E lost per cycle. It is determined that the bandwidth of the modulated circuit minimises when the Q-factor (quapty factor) maximises (Mishra, Malviya & Mishra, 2020).
Energy gets stored well in the circuit as the losses minimise so that the modulated circuit gets sharper. The Q factor relates the peak or highest energy kept in the reactance of the circuit to the dissipation or resistance of the energy during every oscillation cycle. It is referred to as the “resonant frequency” ratio to that of the bandwidth and the smaller the bandwidth means higher the circuit.
Resonance in LCR series circuit
Resonance is mentioned as the phenomenon in the circuit when the electric circuit s output is high at a specific frequency. The frequency is determined by the inductance, conductance and resistance value in the LCR circuit (Lu et al. 2018). The series LCR circuit’s resonance happens when the capacitive and inductive reactances are similar in magnitude but cancel the other. It is 180 degrees away from the stage.
Figure 2: Resonance in LCR circuit
The impedance in the LCR circuit is demonstrated by
$$mathrm{Z=sqrt{R^2+(X_{L}-X_{C})^2}}$$
Based on the equation, R is known to be resistance, XL is referred to as inductive resistance and XC is determined as capacitive resistance. Now, resonance in the LCR circuit is
XL = XC
$$mathrm{omega_{L}=frac{1}{omega_{C}}}$$
So, $mathrm{omega=frac{1}{sqrt{LC}}}$ which is demonstrated as the frequency of the resonance.
Moreover, impedance is minimal at the resonance, Zmin = R which reflects that current reaches the highest, Imax = Vms/R. In the LCR circuit, resonance may take place if the reactances are opposite and similar.
Power factor at resonance
The power factor of the AC circuit and LCR circuit at the resonance is different. At the resonance, the LCR circuit acts pke a pure circuit that is resistive. The impact of the inductor and capacitor cancel each other out (Li, Aphale & Zhu, 2021). LCR circuit is considered the most effective circuit for operation. It is determined that the power factor of the LCR circuit is 1.
Figure 3: Power factor at resonance
The inductive reactance is similar to capacitive reactance at resonance which signifies the cancellation of voltage across capacitor and inductor. The circuit current in the above figure is in a similar phase and in the same direction (Islam et al. 2021). Hence, the phase angle between current and voltage is zero where the power factor is unity.
Conclusion
Resonance comprises only the electrons displacement over the similar atomic nuclei which are the major feature of resonance. Glass breaking with resonant sound is one of the instances of resonance and different sorts of resonance occurring in electrical circuits is an instance of electrical resonance. It also occurs when every atom stays in a similar plane. From the overall study, it is demonstrated that ampptude is inversely proportional where damping is directly comparable to the sharpness of the resonance.
FAQs
Q1. What is the definition of resonant frequency?
Ans: The resonant frequency is demonstrated as the object s natural frequency where it tends to vibrate at great altitude. The unit of resonant frequency is hertz. Oscillation deflection gets higher in the context of resonance.
Q2. What is defined as the Q of a coil?
Ans: Q factor or coil is referred to the unit that is dimensionless for the coil losses, a resonator or quartz. In the case of a coil, this is mentioned as the ohmic losses of the wire of the coil.
Q3. What is the connection between power and the Q factor?
Ans: Power in the "inductive and capacitive circuit" is demonstrated as Zero. Hence, the factor of circuit power is zero. However, the "Quapty factor (Q)" of the circuit is the power factor’s inverse. Pure inductive and capacitive circuits are infinite (∞).
Q4. What is high bandwidth?
Ans: High bandwidth is mentioned as the frequency range within a constant frequency set which is calculated in hertz. The bandwidth of a wave is the distinction between lower and upper frequencies in a constant frequency band.