- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Algorithms for Convex Problem
Method of Steepest Descent
This method is also called Gradient method or Cauchy s method. This method involves the following terminologies −
$$x_{k+1}=x_k+alpha_kd_k$$
$d_k= - igtriangledown fleft ( x_k ight )$ or $ d_k= -frac{igtriangledown fleft ( x_k ight )}{left | igtriangledown fleft ( x_k ight ) ight |}$
Let $phi left (alpha ight )=fleft ( x_k +alpha d_k ight )$
By differentiating $phi$ and equating it to zero, we can get $alpha$.
So the algorithm goes as follows −
Initiapze $x_0$,$varepsilon_1$,$varepsilon_2$ and set $k=0$.
Set $d_k=-igtriangledown fleft ( x_k ight ) $or $d_k=-frac{igtriangledown fleft (x_k ight )}{left |igtriangledown fleft (x_k ight ) ight |}$.
find $alpha_k$ such that it minimizes $phileft ( alpha ight )=fleft ( x_k+alpha d_k ight )$.
Set $x_{k+1}=x_k+alpha_kd_k$.
If $left | x_{k+1-x_k} ight | <varepsilon_1$ or $left | igtriangledown fleft ( x_{k+1} ight ) ight | leq varepsilon_2$, go to step 6, otherwise set $k=k+1$ and go to step 2.
The optimal solution is $hat{x}=x_{k+1}$.
Newton Method
Newton Method works on the following principle −
$fleft ( x ight )=yleft ( x ight )=fleft ( x_k ight )+left ( x-x_k ight )^T igtriangledown fleft ( x_k ight )+frac{1}{2}left ( x-x_k ight )^T Hleft ( x_k ight )left ( x-x_k ight )$
$igtriangledown yleft ( x ight )=igtriangledown fleft ( x_k ight )+Hleft ( x_k ight )left ( x-x_k ight )$
At $x_{k+1}, igtriangledown yleft ( x_{k+1} ight )=igtriangledown fleft ( x_k ight )+Hleft ( x_k ight )left ( x_{k+1}-x_k ight )$
For $x_{k+1}$ to be optimal solution $igtriangledown yleft ( x_k+1 ight )=0$
Thus, $x_{k+1}=x_k-Hleft ( x_k ight )^{-1} igtriangledown fleft ( x_k ight )$
Here $Hleft ( x_k ight )$ should be non-singular.
Hence the algorithm goes as follows −
Step 1 − Initiapze $x_0,varepsilon$ and set $k=0$.
Step 2 − find $Hleft ( x_k ight ) igtriangledown fleft ( x_k ight )$.
Step 3 − Solve for the pnear system $Hleft ( x_k ight )hleft ( x_k ight )=igtriangledown fleft ( x_k ight )$ for $hleft ( x_k ight )$.
Step 4 − find $x_{k+1}=x_k-hleft ( x_k ight )$.
Step 5 − If $left | x_{k+1}-x_k ight |< varepsilon$ or $left | igtriangledown fleft ( x_k ight ) ight | leq varepsilon$ then go to step 6, else set $k=k+1$ and go to step 2.
Step 6 − The optimal solution is $hat{x}=x_{k+1}$.
Conjugate Gradient Method
This method is used for solving problems of the following types −
$min fleft ( x ight )=frac{1}{2}x^T Qx-bx$
where Q is a positive definite nXn matrix and b is constant.
Given $x_0,varepsilon,$ compute $g_0=Qx_0-b$
Set $d_0=-g_0$ for $k=0,1,2,...,$
Set $alpha_k=frac{g_{k}^{T}g_k}{d_{k}^{T}Q d_k}$
Compute $x_{k+1}=x_k+alpha_kd_k$
Set $g_{k+1}=g_k+alpha_kd_k$
Compute $eta_k=frac{g_{k}^{T}g_k}{d_{k}^{T}Qd_k}$
Compute $x_{k+1}=x_k+alpha_kd_k$
Set $g_{k+1}=x_k+alpha_kQd_k$
Compute $eta_k=frac{g_{k+1}^{T}g_{k+1}}{g_{k}^{T}gk}$
Set $d_{k+1}=-g_{k+1}+eta_kd_k$.
Advertisements