- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Differentiable Quasiconvex Function
Theorem
Let S be a non empty convex set in $mathbb{R}^n$ and $f:S ightarrow mathbb{R}$ be differentiable on S, then f is quasiconvex if and only if for any $x_1,x_2 in S$ and $fleft ( x_1 ight )leq fleft ( x_2 ight )$, we have $igtriangledown fleft ( x_2 ight )^Tleft ( x_2-x_1 ight )leq 0$
Proof
Let f be a quasiconvex function.
Let $x_1,x_2 in S$ such that $fleft ( x_1 ight ) leq fleft ( x_2 ight )$
By differentiabipty of f at $x_2, lambda in left ( 0, 1 ight )$
$fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )=fleft ( x_2+lambda left (x_1-x_2 ight ) ight )=fleft ( x_2 ight )+igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )$
$+lambda left | x_1-x_2 ight |alpha left ( x_2,lambda left ( x_1-x_2 ight ) ight )$
$Rightarrow fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )-fleft ( x_2 ight )-fleft ( x_2 ight )=igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )$
$+lambda left | x_1-x_2 ight |alpha left ( x2, lambdaleft ( x_1-x_2 ight ) ight )$
But since f is quasiconvex, $f left ( lambda x_1+ left ( 1- lambda ight )x_2 ight )leq f left (x_2 ight )$
$igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )+lambda left | x_1-x_2 ight |alpha left ( x_2,lambda left ( x_1,x_2 ight ) ight )leq 0$
But $alpha left ( x_2,lambda left ( x_1,x_2 ight ) ight ) ightarrow 0$ as $lambda ightarrow 0$
Therefore, $igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight ) leq 0$
Converse
let for $x_1,x_2 in S$ and $fleft ( x_1 ight )leq fleft ( x_2 ight )$, $igtriangledown fleft ( x_2 ight )^T left ( x_1,x_2 ight ) leq 0$
To show that f is quasiconvex,ie, $fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )leq fleft ( x_2 ight )$
Proof by contradiction
Suppose there exists an $x_3= lambda x_1+left ( 1-lambda ight )x_2$ such that $fleft ( x_2 ight )< f left ( x_3 ight )$ for some $ lambda in left ( 0, 1 ight )$
For $x_2$ and $x_3,igtriangledown fleft ( x_3 ight )^T left ( x_2-x_3 ight ) leq 0$
$Rightarrow -lambda igtriangledown fleft ( x_3 ight )^Tleft ( x_2-x_3 ight )leq 0$
$Rightarrow igtriangledown fleft ( x_3 ight )^T left ( x_1-x_2 ight )geq 0$
For $x_1$ and $x_3,igtriangledown fleft ( x_3 ight )^T left ( x_1-x_3 ight ) leq 0$
$Rightarrow left ( 1- lambda ight )igtriangledown fleft ( x_3 ight )^Tleft ( x_1-x_2 ight )leq 0$
$Rightarrow igtriangledown fleft ( x_3 ight )^T left ( x_1-x_2 ight )leq 0$
thus, from the above equations, $igtriangledown fleft ( x_3 ight )^T left ( x_1-x_2 ight )=0$
Define $U=left { x:fleft ( x ight )leq fleft ( x_2 ight ),x=mu x_2+left ( 1-mu ight )x_3, mu in left ( 0,1 ight ) ight }$
Thus we can find $x_0 in U$ such that $x_0 = mu_0 x_2= mu x_2+left ( 1- mu ight )x_3$ for some $mu _0 in left ( 0,1 ight )$ which is nearest to $x_3$ and $hat{x} in left ( x_0,x_1 ight )$ such that by mean value theorem,
$$frac{fleft ( x_3 ight )-fleft ( x_0 ight )}{x_3-x_0}= igtriangledown fleft ( hat{x} ight )$$
$$Rightarrow fleft ( x_3 ight )=fleft ( x_0 ight )+igtriangledown fleft ( hat{x} ight )^Tleft ( x_3-x_0 ight )$$
$$Rightarrow fleft ( x_3 ight )=fleft ( x_0 ight )+mu_0 lambda fleft ( hat{x} ight )^T left ( x_1-x_2 ight )$$
Since $x_0$ is a combination of $x_1$ and $x_2$ and $fleft (x_2 ight )< fleft ( hat{x} ight )$
By repeating the starting procedure, $igtriangledown f left ( hat{x} ight )^T left ( x_1-x_2 ight )=0$
Thus, combining the above equations, we get:
$$fleft ( x_3 ight )=fleft ( x_0 ight ) leq fleft ( x_2 ight )$$
$$Rightarrow fleft ( x_3 ight )leq fleft ( x_2 ight )$$
Hence, it is contradiction.
Examples
Step 1 − $fleft ( x ight )=X^3$
$Let f left ( x_1 ight )leq fleft ( x_2 ight )$
$Rightarrow x_{1}^{3}leq x_{2}^{3}Rightarrow x_1leq x_2$
$igtriangledown fleft ( x_2 ight )left ( x_1-x_2 ight )=3x_{2}^{2}left ( x_1-x_2 ight )leq 0$
Thus, $fleft ( x ight )$ is quasiconvex.
Step 2 − $fleft ( x ight )=x_{1}^{3}+x_{2}^{3}$
Let $hat{x_1}=left ( 2, -2 ight )$ and $hat{x_2}=left ( 1, 0 ight )$
thus, $fleft ( hat{x_1} ight )=0,fleft ( hat{x_2} ight )=1 Rightarrow fleft ( hat{x_1} ight )setminus < f left ( hat{x_2} ight )$
Thus, $igtriangledown f left ( hat{x_2} ight )^T left ( hat{x_1}- hat{x_2} ight )= left ( 3, 0 ight )^T left ( 1, -2 ight )=3 >0$
Hence $fleft ( x ight )$ is not quasiconvex.
Advertisements