- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Hull
The convex hull of a set of points in S is the boundary of the smallest convex region that contain all the points of S inside it or on its boundary.
OR
Let $Ssubseteq mathbb{R}^n$ The convex hull of S, denoted $Coleft ( S ight )$ by is the collection of all convex combination of S, i.e., $x in Coleft ( S ight )$ if and only if $x in displaystylesumpmits_{i=1}^n lambda_ix_i$, where $displaystylesumpmits_{1}^n lambda_i=1$ and $lambda_i geq 0 forall x_i in S$
Remark − Conves hull of a set of points in S in the plane defines a convex polygon and the points of S on the boundary of the polygon defines the vertices of the polygon.
Theorem $Coleft ( S ight )= left { x:x=displaystylesumpmits_{i=1}^n lambda_ix_i,x_i in S, displaystylesumpmits_{i=1}^n lambda_i=1,lambda_i geq 0 ight }$ Show that a convex hull is a convex set.
Proof
Let $x_1,x_2 in Coleft ( S ight )$, then $x_1=displaystylesumpmits_{i=1}^n lambda_ix_i$ and $x_2=displaystylesumpmits_{i=1}^n lambda_gamma x_i$ where $displaystylesumpmits_{i=1}^n lambda_i=1, lambda_igeq 0$ and $displaystylesumpmits_{i=1}^n gamma_i=1,gamma_igeq0$
For $ heta in left ( 0,1 ight ), heta x_1+left ( 1- heta ight )x_2= heta displaystylesumpmits_{i=1}^n lambda_ix_i+left ( 1- heta ight )displaystylesumpmits_{i=1}^n gamma_ix_i$
$ heta x_1+left ( 1- heta ight )x_2=displaystylesumpmits_{i=1}^n lambda_i heta x_i+displaystylesumpmits_{i=1}^n gamma_ileft ( 1- heta ight )x_i$
$ heta x_1+left ( 1- heta ight )x_2=displaystylesumpmits_{i=1}^nleft [ lambda_i heta +gamma_ileft ( 1- heta ight ) ight ]x_i$
Considering the coefficients,
$displaystylesumpmits_{i=1}^nleft [ lambda_i heta +gamma_ileft ( 1- heta ight ) ight ]= heta displaystylesumpmits_{i=1}^n lambda_i+left ( 1- heta ight )displaystylesumpmits_{i=1}^ngamma_i= heta +left ( 1- heta ight )=1$
Hence, $ heta x_1+left ( 1- heta ight )x_2 in Coleft ( S ight )$
Thus, a convex hull is a convex set.
Advertisements