- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Fritz-John Conditions
Necessary Conditions
Theorem
Consider the problem − $min fleft ( x ight )$ such that $x in X$ where X is an open set in $mathbb{R}^n$ and let $g_i left ( x ight ) leq 0, forall i =1,2,....m$.
Let $f:X ightarrow mathbb{R}$ and $g_i:X ightarrow mathbb{R}$
Let $hat{x}$ be a feasible solution and let f and $g_i, i in I$ are differentiable at $hat{x}$ and $g_i, i in J$ are continuous at $hat{x}$.
If $hat{x}$ solves the above problem locally, then there exists $u_0, u_i in mathbb{R}, i in I$ such that $u_0 igtriangledown fleft ( hat{x} ight )+displaystylesumpmits_{iin I} u_i igtriangledown g_i left ( hat{x} ight )$=0
where $u_0,u_i geq 0,i in I$ and $left ( u_0, u_I ight ) eq left ( 0,0 ight )$
Furthermore, if $g_i,i in J$ are also differentiable at $hat{x}$, then above conditions can be written as −
$u_0 igtriangledown fleft ( hat{x} ight )+displaystylesumpmits_{i=1}^m u_i igtriangledown g_ileft ( hat{x} ight )=0$
$u_ig_ileft (hat{x} ight )$=0
$u_0,u_i geq 0, forall i=1,2,....,m$
$left (u_0,u ight ) eq left ( 0,0 ight ), u=left ( u_1,u_2,s,u_m ight ) in mathbb{R}^m$
Remarks
$u_i$ are called Lagrangian multippers.
The condition that $hat{x}$ be feasible to the given problem is called primal feasible condition.
The requirement $u_0 igtriangledown fleft (hat{x} ight )+displaystylesumpmits_{i=1}^m u-i igtriangledown g_ileft ( x ight )=0$ is called dual feasibipty condition.
The condition $u_ig_ileft ( hat{x} ight )=0, i=1, 2, ...m$ is called comppmentary slackness condition. This condition requires $u_i=0, i in J$
Together the primal feasible condition, dual feasibipty condition and comppmentary slackness are called Fritz-John Conditions.
Sufficient Conditions
Theorem
If there exists an $varepsilon$-neighbourhood of $hat{x}N_varepsilon left ( hat{x} ight ),varepsilon >0$ such that f is pseudoconvex over $N_varepsilon left ( hat{x} ight )cap S$ and $g_i,i in I$ are strictly pseudoconvex over $N_varepsilon left ( hat{x} ight )cap S$, then $hat{x}$ is local optimal solution to problem described above. If f is pseudoconvex at $hat{x}$ and if $g_i, i in I$ are both strictly pseudoconvex and quasiconvex function at $hat{x},hat{x}$ is global optimal solution to the problem described above.
Example
$min :fleft ( x_1,x_2 ight )=left ( x_1-3 ight )^2+left ( x_2-2 ight )^2$
such that $x_{1}^{2}+x_{2}^{2} leq 5, x_1+2x_2 leq 4, x_1,x_2 geq 0$ And $hat{x}=left ( 2,1 ight )$
Let $g_1left (x_1,x_2 ight )=x_{1}^{2}+x_{2}^{2} -5,$
$g_2left (x_1,x_2 ight )=x_1+2x_2-4,$
$g_3left (x_1,x_2 ight )=-x_1$ and $g_4left ( x_1, x_2 ight )= -x_2$.
Thus the above constraints can be written as −
$g_1left (x_1,x_2 ight )leq 0,$
$g_2left (x_1,x_2 ight )leq 0,$
$g_3left (x_1,x_2 ight )leq 0$ and
$g_4left (x_1,x_2 ight )leq 0$ Thus, $I = left {1,2 ight }$ therefore, $u_3=0,u_4=0$
$igtriangledown f left (hat{x} ight )=left (2,-2 ight ),igtriangledown g_1left (hat{x} ight )=left (4,2 ight )$ and $igtriangledown g_2left (hat{x} ight )=left (1,2 ight )$
Thus putting these values in the first condition of Fritz-John conditions, we get −
$u_0=frac{3}{2} u_2, ::u_1= frac{1}{2}u_2,$ and let $u_2=1$, therefore $u_0= frac{3}{2},::u_1= frac{1}{2}$
Thus Fritz John conditions are satisfied.
$min fleft (x_1,x_2 ight )=-x_1$.
such that $x_2-left (1-x_1 ight )^3 leq 0$,
$-x_2 leq 0$ and $hat{x}=left (1,0 ight )$
Let $g_1left (x_1,x_2 ight )=x_2-left (1-x_1 ight )^3$,
$g_2left (x_1,x_2 ight )=-x_2$
Thus the above constraints can be wriiten as −
$g_1left (x_1,x_2 ight )leq 0,$
$g_2left (x_1,x_2 ight )leq 0,$
Thus, $I=left {1,2 ight }$
$igtriangledown fleft (hat{x} ight )=left (-1,0 ight )$
$igtriangledown g_1 left (hat{x} ight )=left (0,1 ight )$ and $g_2 left (hat{x} ight )=left (0, -1 ight )$
Thus putting these values in the first condition of Fritz-John conditions, we get −
$u_0=0,:: u_1=u_2=a>0$
Thus Fritz John conditions are satisfied.