- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Strongly Quasiconvex Function
Let $f:S ightarrow mathbb{R}^n$ and S be a non-empty convex set in $mathbb{R}^n$ then f is strongly quasiconvex function if for any $x_1,x_2 in S$ with $left ( x_1 ight ) eq left ( x_2 ight )$, we have $fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )< max :left { fleft ( x_1 ight ),fleft ( x_2 ight ) ight },forall lambda in left ( 0,1 ight )$
Theorem
A quasiconvex function $f:S ightarrow mathbb{R}^n$ on a non-empty convex set S in $mathbb{R}^n$ is strongly quasiconvex function if it is not constant on a pne segment joining any points of S.
Proof
Let f is quasiconvex function and it is not constant on a pne segment joining any points of S.
Suppose f is not strongly quasiconvex function.
There exist $x_1,x_2 in S$ with $x_1 eq x_2$ such that
$$fleft ( z ight )geq maxleft { fleft ( x_1 ight ), fleft ( x_2 ight ) ight }, forall z= lambda x_1+left ( 1-lambda ight )x_2, lambda in left ( 0,1 ight )$$
$Rightarrow fleft ( x_1 ight )leq fleft ( z ight )$ and $fleft ( x_2 ight )leq fleft ( z ight )$
Since f is not constant in $left [ x_1,z ight ]$ and $left [z,x_2 ight ] $
So there exists $u in left [ x_1,z ight ]$ and $v=left [ z,x_2 ight ]$
$$Rightarrow u= mu_1x_1+left ( 1-mu_1 ight )z,v=mu_2z+left ( 1- mu_2 ight )x_2$$
Since f is quasiconvex,
$$Rightarrow fleft ( u ight )leq maxleft { fleft ( x_1 ight ),f left ( z ight ) ight }=fleft ( z ight ):: and ::f left ( v ight ) leq max left { fleft ( z ight ),fleft ( x_2 ight ) ight }$$
$$Rightarrow fleft ( u ight )leq fleft ( z ight ) :: and :: fleft ( v ight )leq fleft ( z ight )$$
$$Rightarrow max left { fleft ( u ight ),fleft ( v ight ) ight } leq fleft ( z ight )$$
But z is any point between u and v, if any of them are equal, then f is constant.
Therefore, $max left { fleft ( u ight ),fleft ( v ight ) ight } leq fleft ( z ight )$
which contradicts the quasiconvexity of f as $z in left [ u,v ight ]$.
Hence f is strongly quasiconvex function.
Theorem
Let $f:S ightarrow mathbb{R}^n$ and S be a non-empty convex set in $mathbb{R}^n$. If $hat{x}$ is local optimal solution, then $hat{x}$ is unique global optimal solution.
Proof
Since a strong quasiconvex function is also strictly quasiconvex function, thus a local optimal solution is global optimal solution.
Uniqueness − Let f attains global optimal solution at two points $u,v in S$
$$Rightarrow fleft ( u ight ) leq fleft ( x ight ).forall x in S:: and ::fleft ( v ight ) leq fleft ( x ight ).forall x in S$$
If u is global optimal solution, $fleft ( u ight )leq fleft ( v ight )$ and $fleft ( v ight )leq fleft ( u ight )Rightarrow fleft ( u ight )=fleft ( v ight )$
$$fleft ( lambda u+left ( 1-lambda ight )v ight )< max left {fleft ( u ight ),fleft ( v ight ) ight }=fleft ( u ight )$$
which is a contradiction.
Hence there exists only one global optimal solution.
Remarks
A strongly quasiconvex function is also strictly quasiconvex fucntion.
A strictly convex function may or may not be strongly quasiconvex.
A differentiable strictly convex is strongly quasiconvex.