- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Fundamental Separation Theorem
Let S be a non-empty closed, convex set in $mathbb{R}^n$ and $y otin S$. Then, there exists a non zero vector $p$ and scalar $eta$ such that $p^T y>eta$ and $p^T x < eta$ for each $x in S$
Proof
Since S is non empty closed convex set and $y otin S$ thus by closest point theorem, there exists a unique minimizing point $hat{x} in S$ such that
$left ( x-hat{x} ight )^Tleft ( y-hat{x} ight )leq 0 forall x in S$
Let $p=left ( y-hat{x} ight ) eq 0$ and $eta=hat{x}^Tleft ( y-hat{x} ight )=p^That{x}$.
Then $left ( x-hat{x} ight )^Tleft ( y-hat{x} ight )leq 0$
$Rightarrow left ( y-hat{x} ight )^Tleft ( x-hat{x} ight )leq 0$
$Rightarrow left ( y-hat{x} ight )^Txleq left ( y-hat{x} ight )^T hat{x}=hat{x}^Tleft ( y-hat{x} ight )$ i,e., $p^Tx leq eta$
Also, $p^Ty-eta=left ( y-hat{x} ight )^Ty-hat{x}^T left ( y-hat{x} ight )$
$=left ( y-hat{x} ight )^T left ( y-x ight )=left | y-hat{x} ight |^{2}>0$
$Rightarrow p^Ty> eta$
This theorem results in separating hyperplanes. The hyperplanes based on the above theorem can be defined as follows −
Let $S_1$ and $S_2$ are be non-empty subsets of $mathbb{R}$ and $H=left { X:A^TX=b ight }$ be a hyperplane.
The hyperplane H is said to separate $S_1$ and $S_2$ if $A^TX leq b forall X in S_1$ and $A_TX geq b forall X in S_2$
The hyperplane H is said to strictly separate $S_1$ and $S_2$ if $A^TX < b forall X in S_1$ and $A_TX > b forall X in S_2$
The hyperplane H is said to strongly separate $S_1$ and $S_2$ if $A^TX leq b forall X in S_1$ and $A_TX geq b+ varepsilon forall X in S_2$, where $varepsilon$ is a positive scalar.