- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Differentiable Function
Let S be a non-empty open set in $mathbb{R}^n$,then $f:S ightarrow mathbb{R}$ is said to be differentiable at $hat{x} in S$ if there exist a vector $igtriangledown fleft ( hat{x} ight )$ called gradient vector and a function $alpha :mathbb{R}^n ightarrow mathbb{R}$ such that
$fleft ( x ight )=fleft ( hat{x} ight )+igtriangledown fleft ( hat{x} ight )^Tleft ( x-hat{x} ight )+left | x=hat{x} ight |alpha left ( hat{x}, x-hat{x} ight ), forall x in S$ where
$alpha left (hat{x}, x-hat{x} ight ) ightarrow 0 igtriangledown fleft ( hat{x} ight )=left [ frac{partial f}{partial x_1}frac{partial f}{partial x_2}...frac{partial f}{partial x_n} ight ]_{x=hat{x}}^{T}$
Theorem
let S be a non-empty, open convexset in $mathbb{R}^n$ and let $f:S ightarrow mathbb{R}$ be differentiable on S. Then, f is convex if and only if for $x_1,x_2 in S, igtriangledown fleft ( x_2 ight )^T left ( x_1-x_2 ight ) leq fleft ( x_1 ight )-fleft ( x_2 ight )$
Proof
Let f be a convex function. i.e., for $x_1,x_2 in S, lambda in left ( 0, 1 ight )$
$fleft [ lambda x_1+left ( 1-lambda ight )x_2 ight ]leq lambda fleft ( x_1 ight )+left ( 1-lambda ight )fleft ( x_2 ight )$
$ Rightarrow fleft [ lambda x_1+left ( 1-lambda ight )x_2 ight ]leq lambda left ( fleft ( x_1 ight )-fleft ( x_2 ight ) ight )+fleft ( x_2 ight )$
$ Rightarrowlambda left ( fleft ( x_1 ight )-fleft ( x_2 ight ) ight )geq fleft ( x_2+lambda left ( x_1-x_2 ight ) ight )-fleft ( x_2 ight )$
$Rightarrow lambda left ( fleft ( x_1 ight )-fleft ( x_2 ight ) ight )geq fleft ( x_2 ight )+igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )lambda +$
$left | lambda left ( x_1-x_2 ight ) ight |alpha left ( x_2,lambdaleft (x_1 - x_2 ight )-fleft ( x_2 ight ) ight )$
where $alphaleft ( x_2, lambdaleft (x_1 - x_2 ight ) ight ) ightarrow 0$ as$lambda ightarrow 0$
Dividing by $lambda$ on both sides, we get −
$fleft ( x_1 ight )-fleft ( x_2 ight ) geq igtriangledown fleft ( x_2 ight )^T left ( x_1-x_2 ight )$
Converse
Let for $x_1,x_2 in S, igtriangledown fleft ( x_2 ight )^T left ( x_1-x_2 ight ) leq fleft ( x_1 ight )-f left ( x_2 ight )$
To show that f is convex.
Since S is convex, $x_3=lambda x_1+left (1-lambda ight )x_2 in S, lambda in left ( 0, 1 ight )$
Since $x_1, x_3 in S$, therefore
$fleft ( x_1 ight )-f left ( x_3 ight ) geq igtriangledown fleft ( x_3 ight )^T left ( x_1 -x_3 ight )$
$ Rightarrow fleft ( x_1 ight )-f left ( x_3 ight )geq igtriangledown fleft ( x_3 ight )^T left ( x_1 - lambda x_1-left (1-lambda ight )x_2 ight )$
$ Rightarrow fleft ( x_1 ight )-f left ( x_3 ight )geq left ( 1- lambda ight )igtriangledown fleft ( x_3 ight )^T left ( x_1 - x_2 ight )$
Since, $x_2, x_3 in S$ therefore
$fleft ( x_2 ight )-fleft ( x_3 ight )geq igtriangledown fleft ( x_3 ight )^Tleft ( x_2-x_3 ight )$
$Rightarrow fleft ( x_2 ight )-fleft ( x_3 ight )geq igtriangledown fleft ( x_3 ight )^Tleft ( x_2-lambda x_1-left ( 1-lambda ight )x_2 ight )$
$Rightarrow fleft ( x_2 ight )-fleft ( x_3 ight )geq left ( -lambda ight )igtriangledown fleft ( x_3 ight )^Tleft ( x_1-x_2 ight )$
Thus, combining the above equations, we get −
$lambda left ( fleft ( x_1 ight )-fleft ( x_3 ight ) ight )+left ( 1- lambda ight )left ( fleft ( x_2 ight )-fleft ( x_3 ight ) ight )geq 0$
$Rightarrow fleft ( x_3 ight )leq lambda fleft ( x_1 ight )+left ( 1-lambda ight )fleft ( x_2 ight )$
Theorem
let S be a non-empty open convex set in $mathbb{R}^n$ and let $f:S ightarrow mathbb{R}$ be differentiable on S, then f is convex on S if and only if for any $x_1,x_2 in S,left ( igtriangledown f left ( x_2 ight )-igtriangledown f left ( x_1 ight ) ight )^T left ( x_2-x_1 ight ) geq 0$
Proof
let f be a convex function, then using the previous theorem −
$igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )leq fleft ( x_1 ight )-fleft ( x_2 ight )$ and
$igtriangledown fleft ( x_1 ight )^Tleft ( x_2-x_1 ight )leq fleft ( x_2 ight )-fleft ( x_1 ight )$
Adding the above two equations, we get −
$igtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )+igtriangledown fleft ( x_1 ight )^Tleft ( x_2-x_1 ight )leq 0$
$Rightarrow left ( igtriangledown fleft ( x_2 ight )-igtriangledown fleft ( x_1 ight ) ight )^Tleft ( x_1-x_2 ight )leq 0$
$Rightarrow left ( igtriangledown fleft ( x_2 ight )-igtriangledown fleft ( x_1 ight ) ight )^Tleft ( x_2-x_1 ight )geq 0$
Converse
Let for any $x_1,x_2 in S,left (igtriangledown f left ( x_2 ight )- igtriangledown f left ( x_1 ight ) ight )^T left ( x_2-x_1 ight )geq 0$
To show that f is convex.
Let $x_1,x_2 in S$, thus by mean value theorem, $frac{fleft ( x_1 ight )-fleft ( x_2 ight )}{x_1-x_2}=igtriangledown fleft ( x ight ),x in left ( x_1-x_2 ight ) Rightarrow x= lambda x_1+left ( 1-lambda ight )x_2$ because S is a convex set.
$Rightarrow fleft ( x_1 ight )- fleft ( x_2 ight )=left ( igtriangledown fleft ( x ight )^T ight )left ( x_1-x_2 ight )$
for $x,x_1$, we know −
$left ( igtriangledown fleft ( x ight )-igtriangledown fleft ( x_1 ight ) ight )^Tleft ( x-x_1 ight )geq 0$
$Rightarrow left ( igtriangledown fleft ( x ight )-igtriangledown fleft ( x_1 ight ) ight )^Tleft ( lambda x_1+left ( 1-lambda ight )x_2-x_1 ight )geq 0$
$Rightarrow left ( igtriangledown fleft ( x ight )- igtriangledown fleft ( x_1 ight ) ight )^Tleft ( 1- lambda ight )left ( x_2-x_1 ight )geq 0$
$Rightarrow igtriangledown fleft ( x ight )^Tleft ( x_2-x_1 ight )geq igtriangledown fleft ( x_1 ight )^Tleft ( x_2-x_1 ight )$
Combining the above equations, we get −
$Rightarrow igtriangledown fleft ( x_1 ight )^Tleft ( x_2-x_1 ight )leq fleft ( x_2 ight )-fleft ( x_1 ight )$
Hence using the last theorem, f is a convex function.
Twice Differentiable function
Let S be a non-empty subset of $mathbb{R}^n$ and let $f:S ightarrow mathbb{R}$ then f is said to be twice differentiable at $ar{x} in S$ if there exists a vector $igtriangledown fleft (ar{x} ight ), a :nXn$ matrix $Hleft (x ight )$(called Hessian matrix) and a function $alpha:mathbb{R}^n ightarrow mathbb{R}$ such that $fleft ( x ight )=fleft ( ar{x}+x-ar{x} ight )=fleft ( ar{x} ight )+igtriangledown fleft ( ar{x} ight )^Tleft ( x-ar{x} ight )+frac{1}{2}left ( x-ar{x} ight )Hleft ( ar{x} ight )left ( x-ar{x} ight )$
where $ alpha left ( ar{x}, x-ar{x} ight ) ightarrow Oasx ightarrow ar{x}$
Advertisements