- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Norm
A norm is a function that gives a strictly positive value to a vector or a variable.
Norm is a function $f:mathbb{R}^n ightarrow mathbb{R}$
The basic characteristics of a norm are −
Let $X$ be a vector such that $Xin mathbb{R}^n$
$left | x ight |geq 0$
$left | x ight |= 0 Leftrightarrow x= 0forall x in X$
$left |alpha x ight |=left | alpha ight |left | x ight |forall :x in X and :alpha :is :a :scalar$
$left | x+y ight |leq left | x ight |+left | y ight | forall x,y in X$
$left | x-y ight |geq left | left | x ight |-left | y ight | ight |$
By definition, norm is calculated as follows −
$left | x ight |_1=displaystylesumpmits_{i=1}^nleft | x_i ight |$
$left | x ight |_2=left ( displaystylesumpmits_{i=1}^nleft | x_i ight |^2 ight )^{frac{1}{2}}$
$left | x ight |_p=left ( displaystylesumpmits_{i=1}^nleft | x_i ight |^p ight )^{frac{1}{p}},1 leq p leq infty$
Norm is a continuous function.
Proof
By definition, if $x_n ightarrow x$ in $XRightarrow fleft ( x_n ight ) ightarrow fleft ( x ight ) $ then $fleft ( x ight )$ is a constant function.
Let $fleft ( x ight )=left | x ight |$
Therefore, $left | fleft ( x_n ight )-fleft ( x ight ) ight |=left | left | x_n ight | -left | x ight | ight |leq left | left | x_n-x ight | : ight |$
Since $x_n ightarrow x$ thus, $left | x_n-x ight | ightarrow 0$
Therefore $left | fleft ( x_n ight )-fleft ( x ight ) ight |leq 0Rightarrow left | fleft ( x_n ight )-fleft ( x ight ) ight |=0Rightarrow fleft ( x_n ight ) ightarrow fleft ( x ight )$
Hence, norm is a continuous function.
Advertisements