- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Closest Point Theorem
Let S be a non-empty closed convex set in $mathbb{R}^n$ and let $y otin S$, then $exists$ a point $ar{x}in S$ with minimum distance from y, i.e.,$left | y-ar{x} ight | leq left | y-x ight | forall x in S.$
Furthermore, $ar{x}$ is a minimizing point if and only if $left ( y-hat{x} ight )^{T}left ( x-hat{x} ight )leq 0$ or $left ( y-hat{x}, x-hat{x} ight )leq 0$
Proof
Existence of closest point
Since $S e phi,exists$ a point $hat{x}in S$ such that the minimum distance of S from y is less than or equal to $left | y-hat{x} ight |$.
Define $hat{S}=S cap left { x:left | y-x ight |leq left | y-hat{x} ight | ight }$
Since $ hat{S}$ is closed and bounded, and since norm is a continuous function, then by Weierstrass theorem, there exists a minimum point $hat{x} in S$ such that $left | y-hat{x} ight |=Infleft { left | y-x ight |,x in S ight }$
Uniqueness
Suppose $ar{x} in S$ such that $left | y-hat{x} ight |=left | y-hat{x} ight |= alpha$
Since S is convex, $frac{hat{x}+ar{x}}{2} in S$
But, $left | y-frac{hat{x}-ar{x}}{2} ight |leq frac{1}{2}left | y-hat{x} ight |+frac{1}{2}left | y-ar{x} ight |=alpha$
It can t be strict inequapty because $hat{x}$ is closest to y.
Therefore, $left | y-hat{x} ight |=mu left | y-hat{x} ight |$, for some $mu$
Now $left | mu ight |=1.$ If $mu=-1$, then $left ( y-hat{x} ight )=-left ( y-hat{x} ight )Rightarrow y=frac{hat{x}+ar{x}}{2} in S$
But $y in S$. Hence contradiction. Thus $mu=1 Rightarrow hat{x}=ar{x}$
Thus, minimizing point is unique.
For the second part of the proof, assume $left ( y-hat{x} ight )^{ au }left ( x-ar{x} ight )leq 0$ for all $xin S$
Now,
$left | y-x ight |^{2}=left | y-hat{x}+ hat{x}-x ight |^{2}=left | y-hat{x} ight |^{2}+left |hat{x}-x ight |^{2}+2left (hat{x}-x ight )^{ au }left ( y-hat{x} ight )$
$Rightarrow left | y-x ight |^{2}geq left | y-hat{x} ight |^{2}$ because $left | hat{x}-x ight |^{2}geq 0$ and $left ( hat{x}- x ight )^{T}left ( y-hat{x} ight )geq 0$
Thus, $hat{x}$ is minimizing point.
Conversely, assume $hat{x}$ is minimizimg point.
$Rightarrow left | y-x ight |^{2}geq left | y-hat{x} ight |^2 forall x in S$
Since S is convex set.
$Rightarrow lambda x+left ( 1-lambda ight )hat{x}=hat{x}+lambdaleft ( x-hat{x} ight ) in S$ for $x in S$ and $lambda in left ( 0,1 ight )$
Now, $left | y-hat{x}-lambdaleft ( x-hat{x} ight ) ight |^{2}geq left | y-hat{x} ight |^2$
And
$left | y-hat{x}-lambdaleft ( x-hat{x} ight ) ight |^{2}=left | y-hat{x} ight |^{2}+lambda^2left | x-hat{x} ight |^{2}-2lambdaleft ( y-hat{x} ight )^{T}left ( x-hat{x} ight )$
$Rightarrow left | y-hat{x} ight |^{2}+lambda^{2}left | x-hat{x} ight |-2 lambdaleft ( y-hat{x} ight )^{T}left ( x-hat{x} ight )geq left | y-hat{x} ight |^{2}$
$Rightarrow 2 lambdaleft ( y-hat{x} ight )^{T}left ( x-hat{x} ight )leq lambda^2left | x-hat{x} ight |^2$
$Rightarrow left ( y-hat{x} ight )^{T}left ( x-hat{x} ight )leq 0$
Hence Proved.
Advertisements