English 中文(简体)
Caratheodory Theorem
  • 时间:2024-12-22

Caratheodory Theorem


Previous Page Next Page  

Let S be an arbitrary set in $mathbb{R}^n$.If $x in Coleft ( S ight )$, then $x in Coleft ( x_1,x_2,....,x_n,x_{n+1} ight )$.

Proof

Since $x in Coleft ( S ight )$, then $x$ is representated by a convex combination of a finite number of points in S, i.e.,

$x=displaystylesumpmits_{j=1}^k lambda_jx_j,displaystylesumpmits_{j=1}^k lambda_j=1, lambda_j geq 0$ and $x_j in S, forall j in left ( 1,k ight )$

If $k leq n+1$, the result obtained is obviously true.

If $k geq n+1$, then $left ( x_2-x_1 ight )left ( x_3-x_1 ight ),....., left ( x_k-x_1 ight )$ are pnearly dependent.

$Rightarrow exists mu _j in mathbb{R}, 2leq jleq k$ (not all zero) such that $displaystylesumpmits_{j=2}^k mu _jleft ( x_j-x_1 ight )=0$

Define $mu_1=-displaystylesumpmits_{j=2}^k mu _j$, then $displaystylesumpmits_{j=1}^k mu_j x_j=0, displaystylesumpmits_{j=1}^k mu_j=0$

where not all $mu_j s$ are equal to zero. Since $displaystylesumpmits_{j=1}^k mu_j=0$, at least one of the $mu_j > 0,1 leq j leq k$

Then, $x=displaystylesumpmits_{1}^k lambda_j x_j+0$

$x=displaystylesumpmits_{1}^k lambda_j x_j- alpha displaystylesumpmits_{1}^k mu_j x_j$

$x=displaystylesumpmits_{1}^kleft ( lambda_j- alphamu_j ight )x_j $

Choose $alpha$ such that $alpha=minleft { frac{lambda_j}{mu_j}, mu_jgeq 0 ight }=frac{lambda_j}{mu _j},$ for some $i=1,2,...,k$

If $mu_jleq 0, lambda_j-alpha mu_jgeq 0$

If $mu_j> 0, then :frac{lambda _j}{mu_j}geq frac{lambda_i}{mu _i}=alpha Rightarrow lambda_j-alpha mu_jgeq 0, j=1,2,...k$

In particular, $lambda_i-alpha mu_i=0$, by definition of $alpha$

$x=displaystylesumpmits_{j=1}^k left ( lambda_j- alphamu_j ight )x_j$,where

$lambda_j- alphamu_jgeq0$ and $displaystylesumpmits_{j=1}^kleft ( lambda_j- alphamu_j ight )=1$ and $lambda_i- alphamu_i=0$

Thus, x can be representated as a convex combination of at most (k-1) points.

This reduction process can be repeated until x is representated as a convex combination of (n+1) elements.

Advertisements