- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Inner Product
Inner product is a function which gives a scalar to a pair of vectors.
Inner Product − $f:mathbb{R}^n imes mathbb{R}^n ightarrow kappa$ where $kappa$ is a scalar.
The basic characteristics of inner product are as follows −
Let $X in mathbb{R}^n$
$left langle x,x ight anglegeq 0, forall x in X$
$left langle x,x ight angle=0Leftrightarrow x=0, forall x in X$
$left langle alpha x,y ight angle=alpha left langle x,y ight angle,forall alpha in kappa : and: forall x,y in X$
$left langle x+y,z ight angle =left langle x,z ight angle +left langle y,z ight angle, forall x,y,z in X$
$left langle overpne{y,x} ight angle=left ( x,y ight ), forall x, y in X$
Note −
Relationship between norm and inner product: $left | x ight |=sqrt{left ( x,x ight )}$
$forall x,y in mathbb{R}^n,left langle x,y ight angle=x_1y_1+x_2y_2+...+x_ny_n$
Examples
1. find the inner product of $x=left ( 1,2,1 ight ): and : y=left ( 3,-1,3 ight )$
Solution
$left langle x,y ight angle =x_1y_1+x_2y_2+x_3y_3$
$left langle x,y ight angle=left ( 1 imes3 ight )+left ( 2 imes-1 ight )+left ( 1 imes3 ight )$
$left langle x,y ight angle=3+left ( -2 ight )+3$
$left langle x,y ight angle=4$
2. If $x=left ( 4,9,1 ight ),y=left ( -3,5,1 ight )$ and $z=left ( 2,4,1 ight )$, find $left ( x+y,z ight )$
Solution
As we know, $left langle x+y,z ight angle=left langle x,z ight angle+left langle y,z ight angle$
$left langle x+y,z ight angle=left ( x_1z_1+x_2z_2+x_3z_3 ight )+left ( y_1z_1+y_2z_2+y_3z_3 ight )$
$left langle x+y,z ight angle=left { left ( 4 imes 2 ight )+left ( 9 imes 4 ight )+left ( 1 imes1 ight ) ight }+$
$left { left ( -3 imes2 ight )+left ( 5 imes4 ight )+left ( 1 imes 1 ight ) ight }$
$left langle x+y,z ight angle=left ( 8+36+1 ight )+left ( -6+20+1 ight )$
$left langle x+y,z ight angle=45+15$
$left langle x+y,z ight angle=60$
Advertisements