- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Quasiconvex and Quasiconcave functions
Let $f:S ightarrow mathbb{R}$ where $S subset mathbb{R}^n$ is a non-empty convex set. The function f is said to be quasiconvex if for each $x_1,x_2 in S$, we have $fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )leq maxleft { fleft ( x_1 ight ),fleft ( x_2 ight ) ight },lambda in left ( 0, 1 ight )$
For example, $fleft ( x ight )=x^{3}$
Let $f:S ightarrow R $ where $Ssubset mathbb{R}^n$ is a non-empty convex set. The function f is said to be quasiconvex if for each $x_1, x_2 in S$, we have $fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )geq minleft { fleft ( x_1 ight ),fleft ( x_2 ight ) ight }, lambda in left ( 0, 1 ight )$
Remarks
Every convex function is quasiconvex but the converse is not true.
A function which is both quasiconvex and quasiconcave is called quasimonotone.
Theorem
Let $f:S ightarrow mathbb{R}$ and S is a non empty convex set in $mathbb{R}^n$. The function f is quasiconvex if and only if $S_{alpha} =left ( x in S:fleft ( x ight )leq alpha ight }$ is convex for each real number alpha$
Proof
Let f is quasiconvex on S.
Let $x_1,x_2 in S_{alpha}$ therefore $x_1,x_2 in S$ and $max left { fleft ( x_1 ight ),fleft ( x_2 ight ) ight }leq alpha$
Let $lambda in left (0, 1 ight )$ and let $x=lambda x_1+left ( 1-lambda ight )x_2leq max left { fleft ( x_1 ight ),fleft ( x_2 ight ) ight }Rightarrow x in S$
Thus, $fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )leq maxleft { fleft ( x_1 ight ), fleft ( x_2 ight ) ight }leq alpha$
Therefore, $S_{alpha}$ is convex.
Converse
Let $S_{alpha}$ is convex for each $alpha$
$x_1,x_2 in S, lambda in left ( 0,1 ight )$
$x=lambda x_1+left ( 1-lambda ight )x_2$
Let $x=lambda x_1+left ( 1-lambda ight )x_2$
For $x_1, x_2 in S_{alpha}, alpha= max left { fleft ( x_1 ight ), fleft ( x_2 ight ) ight }$
$Rightarrow lambda x_1+left (1-lambda ight )x_2 in S_{alpha}$
$Rightarrow f left (lambda x_1+left (1-lambda ight )x_2 ight )leq alpha$
Hence proved.
Theorem
Let $f:S ightarrow mathbb{R}$ and S is a non empty convex set in $mathbb{R}^n$. The function f is quasiconcave if and only if $S_{alpha} =left { x in S:fleft ( x ight )geq alpha ight }$ is convex for each real number $alpha$.
Theorem
Let $f:S ightarrow mathbb{R}$ and S is a non empty convex set in $mathbb{R}^n$. The function f is quasimonotone if and only if $S_{alpha} =left { x in S:fleft ( x ight )= alpha ight }$ is convex for each real number $alpha$.
Advertisements