- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Polar Cone
Let S be a non empty set in $mathbb{R}^n$ Then, the polar cone of S denoted by $S^*$ is given by $S^*=left {p in mathbb{R}^n, p^Tx leq 0 : forall x in S ight }$.
Remark
Polar cone is always convex even if S is not convex.
If S is empty set, $S^*=mathbb{R}^n$.
Polarity may be seen as a generapsation of orthogonapty.
Let $Csubseteq mathbb{R}^n$ then the orthogonal space of C, denoted by $C^perp =left { y in mathbb{R}^n:left langle x,y ight angle=0 forall x in C ight }$.
Lemma
Let $S,S_1$ and $S_2$ be non empty sets in $mathbb{R}^n$ then the following statements are true −
$S^*$ is a closed convex cone.
$S subseteq S^{**}$ where $S^{**}$ is a polar cone of $S^*$.
$S_1 subseteq S_2 Rightarrow S_{2}^{*} subseteq S_{1}^{*}$.
Proof
Step 1 − $S^*=left { p in mathbb{R}^n,p^Txleq 0 : forall :x in S ight }$
Let $x_1,x_2 in S^*Rightarrow x_{1}^{T}xleq 0 $ and $x_{2}^{T}x leq 0,forall x in S$
For $lambda in left ( 0, 1 ight ),left [ lambda x_1+left ( 1-lambda ight )x_2 ight ]^Tx=left [ left ( lambda x_1 ight )^T+ left {left ( 1-lambda ight )x_{2} ight }^{T} ight ]x, forall x in S$
$=left [ lambda x_{1}^{T} +left ( 1-lambda ight )x_{2}^{T} ight ]x=lambda x_{1}^{T}x+left ( 1-lambda ight )x_{2}^{T}leq 0$
Thus $lambda x_1+left ( 1-lambda ight )x_{2} in S^*$
Therefore $S^*$ is a convex set.
For $lambda geq 0,p^{T}x leq 0, forall :x in S$
Therefore, $lambda p^T x leq 0,$
$Rightarrow left ( lambda p ight )^T x leq 0$
$Rightarrow lambda p in S^*$
Thus, $S^*$ is a cone.
To show $S^*$ is closed, i.e., to show if $p_n ightarrow p$ as $n ightarrow infty$, then $p in S^*$
$forall x in S, p_{n}^{T}x-p^T x=left ( p_n-p ight )^T x$
As $p_n ightarrow p$ as $n ightarrow infty Rightarrow left ( p_n ightarrow p ight ) ightarrow 0$
Therefore $p_{n}^{T}x ightarrow p^{T}x$. But $p_{n}^{T}x leq 0, : forall x in S$
Thus, $p^Tx leq 0, forall x in S$
$Rightarrow p in S^*$
Hence, $S^*$ is closed.
Step 2 − $S^{**}=left { q in mathbb{R}^n:q^T p leq 0, forall p in S^* ight }$
Let $x in S$, then $ forall p in S^*, p^T x leq 0 Rightarrow x^Tp leq 0 Rightarrow x in S^{**}$
Thus, $S subseteq S^{**}$
Step 3 − $S_2^*=left { p in mathbb{R}^n:p^Txleq 0, forall x in S_2 ight }$
Since $S_1 subseteq S_2 Rightarrow forall x in S_2 Rightarrow forall x in S_1$
Therefore, if $hat{p} in S_2^*, $then $hat{p}^Tx leq 0,forall x in S_2$
$Rightarrow hat{p}^Txleq 0, forall x in S_1$
$Rightarrow hat{p}^T in S_1^*$
$Rightarrow S_2^* subseteq S_1^*$
Theorem
Let C be a non empty closed convex cone, then $C=C^**$
Proof
$C=C^{**}$ by previous lemma.
To prove : $x in C^{**} subseteq C$
Let $x in C^{**}$ and let $x otin C$
Then by fundamental separation theorem, there exists a vector $p eq 0$ and a scalar $alpha$ such that $p^Ty leq alpha, forall y in C$
Therefore, $p^Tx > alpha$
But since $left ( y=0 ight ) in C$ and $p^Tyleq alpha, forall y in C Rightarrow alphageq 0$ and $p^Tx>0$
If $p otin C^*$, then there exists some $ar{y} in C$ such that $p^T ar{y}>0$ and $p^Tleft ( lambda ar{y} ight )$ can be made arbitrarily large by taking $lambda$ sufficiently large.
This contradicts with the fact that $p^Ty leq alpha, forall y in C$
Therefore,$p in C^*$
Since $x in C^*=left { q:q^Tpleq 0, forall p in C^* ight }$
Therefore, $x^Tp leq 0 Rightarrow p^Tx leq 0$
But $p^Tx> alpha$
Thus is contardiction.
Thus, $x in C$
Hence $C=C^{**}$.
Advertisements