- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Cones
A non empty set C in $mathbb{R}^n$ is said to be cone with vertex 0 if $x in CRightarrow lambda x in C forall lambda geq 0$.
A set C is a convex cone if it convex as well as cone.
For example, $y=left | x ight |$ is not a convex cone because it is not convex.
But, $y geq left | x ight |$ is a convex cone because it is convex as well as cone.
Note − A cone C is convex if and only if for any $x,y in C, x+y in C$.
Proof
Since C is cone, for $x,y in C Rightarrow lambda x in C$ and $mu y in C :forall :lambda, mu geq 0$
C is convex if $lambda x + left ( 1-lambda ight )y in C : forall :lambda in left ( 0, 1 ight )$
Since C is cone, $lambda x in C$ and $left ( 1-lambda ight )y in C Leftrightarrow x,y in C$
Thus C is convex if $x+y in C$
In general, if $x_1,x_2 in C$, then, $lambda_1x_1+lambda_2x_2 in C, forall lambda_1,lambda_2 geq 0$
Examples
The conic combination of infinite set of vectors in $mathbb{R}^n$ is a convex cone.
Any empty set is a convex cone.
Any pnear function is a convex cone.
Since a hyperplane is pnear, it is also a convex cone.
Closed half spaces are also convex cones.
Note − The intersection of two convex cones is a convex cone but their union may or may not be a convex cone.
Advertisements