- Algorithms for Convex Problems
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Fritz-John Conditions
- Convex Programming Problem
- Pseudoconvex Function
- Strongly Quasiconvex Function
- Strictly Quasiconvex Function
- Differentiable Quasiconvex Function
- Quasiconvex & Quasiconcave functions
- Sufficient & Necessary Conditions for Global Optima
- Differentiable Convex Function
- Convex & Concave Function
- Direction
- Extreme point of a convex set
- Polyhedral Set
- Conic Combination
- Polar Cone
- Convex Cones
- Fundamental Separation Theorem
- Closest Point Theorem
- Weierstrass Theorem
- Caratheodory Theorem
- Convex Hull
- Affine Set
- Convex Set
- Minima and Maxima
- Inner Product
- Norm
- Linear Programming
- Introduction
- Home
Convex Optimization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Convex Optimization - Minima and Maxima
Local Minima or Minimize
$ar{x}in :S$ is said to be local minima of a function $f$ if $fleft ( ar{x} ight )leq fleft ( x ight ),forall x in N_varepsilon left ( ar{x} ight )$ where $N_varepsilon left ( ar{x} ight )$ means neighbourhood of $ar{x}$, i.e., $N_varepsilon left ( ar{x} ight )$ means $left | x-ar{x} ight |< varepsilon$
Local Maxima or Maximizer
$ar{x}in :S$ is said to be local maxima of a function $f$ if $fleft ( ar{x} ight )geq fleft ( x ight ), forall x in N_varepsilon left ( ar{x} ight )$ where $N_varepsilon left ( ar{x} ight )$ means neighbourhood of $ar{x}$, i.e., $N_varepsilon left ( ar{x} ight )$ means $left | x-ar{x} ight |< varepsilon$
Global minima
$ar{x}in :S$ is said to be global minima of a function $f$ if $fleft ( ar{x} ight )leq fleft ( x ight ), forall x in S$
Global maxima
$ar{x}in :S$ is said to be global maxima of a function $f$ if $fleft ( ar{x} ight )geq fleft ( x ight ), forall x in S$
Examples
Step 1 − find the local minima and maxima of $fleft ( ar{x} ight )=left | x^2-4 ight |$
Solution −
From the graph of the above function, it is clear that the local minima occurs at $x= pm 2$ and local maxima at $x = 0$
Step 2 − find the global minima af the function $fleft (x ight )=left | 4x^3-3x^2+7 ight |$
Solution −
From the graph of the above function, it is clear that the global minima occurs at $x=-1$.
Advertisements