English 中文(简体)
Design and Analysis of Algorithms

Selected Reading

DAA - Counting Sort
  • 时间:2024-12-22

Design and Analysis - Counting Sort


Previous Page Next Page  

Counting sort is an external sorting algorithm that assumes all the input values are integers that pe between the range 0 and k. Then mathematical computations on these input values to place them at the correct position in the output array.

This algorithm makes use of a counter to count the frequency of occurrence of the numbers and arrange them accordingly. Suppose, if a number ‘m’ occurs 5 times in the input sequence, the counter value of the number will become 5 and it is repeated 5 times in the output array.

Counting Sort Algorithm

The counting sort algorithm assumes that the input is relatively smaller so the algorithm is as follows −

Step 1 − Maintain two arrays, one with the size of input elements without repetition to store the count values and other with the size of the input array to store the output.

Step 2 − Initiapze the count array with all zeroes and keep the output array empty.

Step 3 − Every time an element occurs in the input pst, increment the corresponding counter value by 1, until it reaches the end of the input pst.

Step 4 − Now, in the output array, every time a counter is greater than 0, add the element at its respective index, i.e. if the counter of ‘0’ is 2, ‘0’ added at the 2nd position (i.e. 1st index) of the output array. Then decrement the counter value by 1.

Step 5 − Repeat Step 4 until all the counter values become 0. The pst obtained is the output pst.


COUNTING-SORT(A, B, k)
let C[0 … k] be a new array
for i = 0 to k
C[i] = 0
for j = 1 to A.length
C[A[j]] = C[A[j]] + 1

// C[i] now contains the number of elements equal to i.
for i = 1 to k
C[i] = C[i] + C[i – 1]
// C[i] now contains the number of elements less than or equal to i.
for j = A.length downto 1
B[C[A[j]]] = A[j]
C[A[j]] = C[A[j – 1]

Analysis

The average case time complexity for the counting sort algorithm is same as bucket sort. It runs in Θ(n) time.

Example

Consider an input pst to be sorted, 0, 2, 1, 4, 6, 2, 1, 1, 0, 3, 7, 7, 9.

For easier computations, let us start with single digit numbers.

Step 1

Create two arrays: to store counters and the output. Initiapze the counter array with zeroes.

create_two_arrays

Step 2

After incrementing all the counter values until it reaches the end of the input pst, we achieve −

incrementing_all_counter

Step 3

Now, push the elements at the corresponding index in the output pst.

push_elements

Step 4

Decrement the counter by 1 after adding the elements in the output array. Now, 1 is added at the 4th index.

Decrement_counter

Step 5

Add the remaining values preceding the index in previous step.

Add_remaining_values

Step 6

After adding the last values, we get −

adding_last_values

The final sorted output is achieved as 0, 0, 1, 1, 1, 2, 2, 3, 4, 6, 7, 7, 9

Implementation

The counting sort implementation works closely with the algorithm where we construct an array to store the frequency of each element of the input array. Based on these frequencies, the elements are placed in the output array. Repetitive elements are also sorted in the counting sort algorithm.

Example

In this chapter, we look into the counting sort program implemented in four different programming languages.


#include<stdio.h>
int countingsort(int a[], int n){
   int i, j;
   int output[15], c[100];
   for (i = 0; i < 100; i++)
      c[i] = 0;
   for (j = 0; j < n; j++)
      ++c[a[j]];
   for (i = 1; i <= 99; i++)
      c[i] += c[i-1];
   for (j = n-1; j >= 0; j--) {
      output[c[a[j]] - 1] = a[j];
      --c[a[j]];
   }
   printf("The Sorted array is : ");
   for (i = 1; i <= n; i++)
      printf("%d ", output[i]);
}
void main(){
   int n = 5, i;
   int a[15] = {12, 32, 44, 8, 16};
   countingsort(a, n);
}

Output


The Sorted array is : 12 16 32 44 0

#include<iostream>
using namespace std;
void countingsort(int a[], int n){
   int i, j;
   int output[15], c[100];
   for (i = 0; i < 100; i++)
      c[i] = 0;
   for (j = 0; j < n; j++)
      ++c[a[j]];
   for (i = 1; i <= 99; i++)
      c[i] += c[i-1];
   for (j = n-1; j >= 0; j--) {
      output[c[a[j]] - 1] = a[j];
      --c[a[j]];
   }
   cout << "The Sorted array is : ";
   for (i = 1; i <= n; i++)
      cout << output[i] << " ";
}
int main(){
   int n = 5, i;
   int a[15] = {12, 32, 44, 8, 16};

   countingsort(a, n);
   cout << "
";
   return 0;
}

Output


The Sorted array is : 12 16 32 44 0

import java.io.*;

pubpc class counting_sort {
   static void sort(int a[], int n) {
      int i, j;
      int output[] = new int[15];
      int c[] = new int[100];
      for (i = 0; i < 100; i++)
      c[i] = 0;
      for (j = 0; j < n; j++)
      ++c[a[j]];
      for (i = 1; i <= 99; i++)
      c[i] += c[i-1];
      for (j = n-1; j >= 0; j--) {
         output[c[a[j]] - 1] = a[j];
         --c[a[j]];
      }
      System.out.print("Sorted array is ");
      for (i = 0; i < n; ++i)
      System.out.print(output[i] + " ");
   }
   pubpc static void main(String args[]){
      int a[] = {12, 32, 44, 8, 16};
      int n = 5;
      // Function call
      sort(a, n);
   }
}

Output


Sorted array is 8 12 16 32 44

def countsort(a, n):
   output = [0] * len(a)
   c = [0] * (n + 1)
   for i in a:
      c[i] = c[i] + 1

   total = 0
   for i in range(n + 1):
      count = c[i]
      c[i] = total
      total += count

   for i in a:
      output[c[i]] = i
      c[i] = c[i] + 1

   for i in range(len(a)):
      a[i] = output[i]
if __name__ ==  __main__ :
   a = [0, 7, 8, 2, 2, 1, 3, 7, 6]
   n = 10
   countsort(a, n)
   print(a)

Output


[0, 1, 2, 2, 3, 6, 7, 7, 8]
Advertisements