- DAA - Discussion
- DAA - Useful Resources
- DAA - Quick Guide
- DAA - Hill Climbing Algorithm
- NP Hard & NP-Complete Classes
- DAA - Cook’s Theorem
- DAA - P and NP Class
- DAA - Vertex Cover
- DAA - Max Cliques
- Deterministic vs. Nondeterministic Computations
- DAA - Sublist Search
- DAA - Fibonacci Search
- DAA - Exponential Search
- DAA - Jump Search
- DAA - Interpolation Search
- DAA - Binary Search
- DAA - Linear Search
- Searching Techniques Introduction
- DAA - Radix Sort
- DAA - Counting Sort
- DAA - Bucket Sort
- DAA - Heap Sort
- DAA - Shell Sort
- DAA - Selection Sort
- DAA - Insertion Sort
- DAA - Bubble Sort
- DAA - Extract Method
- DAA - Heapify Method
- DAA - Insert Method
- DAA - Binary Heap
- Optimal Cost Binary Search Trees
- DAA - Multistage Graph
- DAA - Shortest Paths
- DAA - Spanning Tree
- Travelling Salesperson Approximation Algorithm
- Set Cover Problem
- Vertex Cover Problem
- Approximation Algorithms
- Fisher-Yates Shuffle
- Karger’s Minimum Cut
- Randomized Quick Sort
- Randomized Algorithms
- Travelling Salesman Problem | Dynamic Programming
- Longest Common Subsequence
- DAA - 0-1 Knapsack
- Floyd Warshall Algorithm
- Matrix Chain Multiplication
- DAA - Dynamic Programming
- DAA - Optimal Merge Pattern
- DAA - Job Sequencing with Deadline
- DAA - Fractional Knapsack
- Map Colouring Algorithm
- Dijkstra’s Shortest Path Algorithm
- Kruskal’s Minimal Spanning Tree
- Travelling Salesman Problem
- DAA - Greedy Method
- Towers of Hanoi
- Karatsuba Algorithm
- Strassen’s Matrix Multiplication
- DAA - Binary Search
- DAA - Merge Sort
- DAA - Max-Min Problem
- DAA - Divide & Conquer
- DAA - Space Complexities
- Master’s Theorem
- Time Complexity
- Asymptotic Notations & Apriori Analysis
- DAA - Methodology of Analysis
- DAA - Analysis of Algorithms
- DAA - Introduction
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Design and Analysis Multistage Graph
A multistage graph G = (V, E) is a directed graph where vertices are partitioned into k (where k > 1) number of disjoint subsets S = {s1,s2,…,sk} such that edge (u, v) is in E, then u Є si and v Є s1 + 1 for some subsets in the partition and |s1| = |sk| = 1.
The vertex s Є s1 is called the source and the vertex t Є sk is called sink.
G is usually assumed to be a weighted graph. In this graph, cost of an edge (i, j) is represented by c(i, j). Hence, the cost of path from source s to sink t is the sum of costs of each edges in this path.
The multistage graph problem is finding the path with minimum cost from source s to sink t.
Example
Consider the following example to understand the concept of multistage graph.

According to the formula, we have to calculate the cost (i, j) using the following steps
Step 1: Cost (K-2, j)
In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three options to choose the minimum cost at this step.
Cost(3, 4) = min {c(4, 7) + Cost(7, 9),c(4, 8) + Cost(8, 9)} = 7
Cost(3, 5) = min {c(5, 7) + Cost(7, 9),c(5, 8) + Cost(8, 9)} = 5
Cost(3, 6) = min {c(6, 7) + Cost(7, 9),c(6, 8) + Cost(8, 9)} = 5
Step 2: Cost (K-3, j)
Two nodes are selected as j because at stage k - 3 = 2 there are two nodes, 2 and 3. So, the value i = 2 and j = 2 and 3.
Cost(2, 2) = min {c(2, 4) + Cost(4, 8) + Cost(8, 9),c(2, 6) +
Cost(6, 8) + Cost(8, 9)} = 8
Cost(2, 3) = {c(3, 4) + Cost(4, 8) + Cost(8, 9), c(3, 5) + Cost(5, 8)+ Cost(8, 9), c(3, 6) + Cost(6, 8) + Cost(8, 9)} = 10
Step 3: Cost (K-4, j)
Cost (1, 1) = {c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) + Cost(3, 5) + Cost(5, 8) + Cost(8, 9))} = 12
c(1, 3) + Cost(3, 6) + Cost(6, 8 + Cost(8, 9))} = 13
Hence, the path having the minimum cost is 1→ 3→ 5→ 8→ 9.
Advertisements