- DAA - Discussion
- DAA - Useful Resources
- DAA - Quick Guide
- DAA - Hill Climbing Algorithm
- NP Hard & NP-Complete Classes
- DAA - Cook’s Theorem
- DAA - P and NP Class
- DAA - Vertex Cover
- DAA - Max Cliques
- Deterministic vs. Nondeterministic Computations
- DAA - Sublist Search
- DAA - Fibonacci Search
- DAA - Exponential Search
- DAA - Jump Search
- DAA - Interpolation Search
- DAA - Binary Search
- DAA - Linear Search
- Searching Techniques Introduction
- DAA - Radix Sort
- DAA - Counting Sort
- DAA - Bucket Sort
- DAA - Heap Sort
- DAA - Shell Sort
- DAA - Selection Sort
- DAA - Insertion Sort
- DAA - Bubble Sort
- DAA - Extract Method
- DAA - Heapify Method
- DAA - Insert Method
- DAA - Binary Heap
- Optimal Cost Binary Search Trees
- DAA - Multistage Graph
- DAA - Shortest Paths
- DAA - Spanning Tree
- Travelling Salesperson Approximation Algorithm
- Set Cover Problem
- Vertex Cover Problem
- Approximation Algorithms
- Fisher-Yates Shuffle
- Karger’s Minimum Cut
- Randomized Quick Sort
- Randomized Algorithms
- Travelling Salesman Problem | Dynamic Programming
- Longest Common Subsequence
- DAA - 0-1 Knapsack
- Floyd Warshall Algorithm
- Matrix Chain Multiplication
- DAA - Dynamic Programming
- DAA - Optimal Merge Pattern
- DAA - Job Sequencing with Deadline
- DAA - Fractional Knapsack
- Map Colouring Algorithm
- Dijkstra’s Shortest Path Algorithm
- Kruskal’s Minimal Spanning Tree
- Travelling Salesman Problem
- DAA - Greedy Method
- Towers of Hanoi
- Karatsuba Algorithm
- Strassen’s Matrix Multiplication
- DAA - Binary Search
- DAA - Merge Sort
- DAA - Max-Min Problem
- DAA - Divide & Conquer
- DAA - Space Complexities
- Master’s Theorem
- Time Complexity
- Asymptotic Notations & Apriori Analysis
- DAA - Methodology of Analysis
- DAA - Analysis of Algorithms
- DAA - Introduction
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Optimal Cost Binary Search Trees
A Binary Search Tree (BST) is a tree where the key values are stored in the internal nodes. The external nodes are null nodes. The keys are ordered lexicographically, i.e. for each internal node all the keys in the left sub-tree are less than the keys in the node, and all the keys in the right sub-tree are greater.
When we know the frequency of searching each one of the keys, it is quite easy to compute the expected cost of accessing each node in the tree. An optimal binary search tree is a BST, which has minimal expected cost of locating each node
Search time of an element in a BST is O(n), whereas in a Balanced-BST search time is O(log n). Again the search time can be improved in Optimal Cost Binary Search Tree, placing the most frequently used data in the root and closer to the root element, while placing the least frequently used data near leaves and in leaves.
Here, the Optimal Binary Search Tree Algorithm is presented. First, we build a BST from a set of provided n number of distinct keys < k1, k2, k3, ... kn >. Here we assume, the probabipty of accessing a key Ki is pi. Some dummy keys (d0, d1, d2, ... dn) are added as some searches may be performed for the values which are not present in the Key set K. We assume, for each dummy key di probabipty of access is qi.
Optimal-Binary-Search-Tree(p, q, n) e[1…n + 1, 0…n], w[1…n + 1, 0…n], root[1…n + 1, 0…n] for i = 1 to n + 1 do e[i, i - 1] := qi - 1 w[i, i - 1] := qi - 1 for l = 1 to n do for i = 1 to n – l + 1 do j = i + l – 1 e[i, j] := ∞ w[i, i] := w[i, i -1] + pj + qj for r = i to j do t := e[i, r - 1] + e[r + 1, j] + w[i, j] if t < e[i, j] e[i, j] := t root[i, j] := r return e and root
Analysis
The algorithm requires O (n3) time, since three nested for loops are used. Each of these loops takes on at most n values.
Example
Considering the following tree, the cost is 2.80, though this is not an optimal result.
Node | Depth | Probabipty | Contribution |
---|---|---|---|
k1 | 1 | 0.15 | 0.30 |
k2 | 0 | 0.10 | 0.10 |
k3 | 2 | 0.05 | 0.15 |
k4 | 1 | 0.10 | 0.20 |
k5 | 2 | 0.20 | 0.60 |
d0 | 2 | 0.05 | 0.15 |
d1 | 2 | 0.10 | 0.30 |
d2 | 3 | 0.05 | 0.20 |
d3 | 3 | 0.05 | 0.20 |
d4 | 3 | 0.05 | 0.20 |
d5 | 3 | 0.10 | 0.40 |
Total | 2.80 |
To get an optimal solution, using the algorithm discussed in this chapter, the following tables are generated.
In the following tables, column index is i and row index is j.
e | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
5 | 2.75 | 2.00 | 1.30 | 0.90 | 0.50 | 0.10 |
4 | 1.75 | 1.20 | 0.60 | 0.30 | 0.05 | |
3 | 1.25 | 0.70 | 0.25 | 0.05 | ||
2 | 0.90 | 0.40 | 0.05 | |||
1 | 0.45 | 0.10 | ||||
0 | 0.05 |
w | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
5 | 1.00 | 0.80 | 0.60 | 0.50 | 0.35 | 0.10 |
4 | 0.70 | 0.50 | 0.30 | 0.20 | 0.05 | |
3 | 0.55 | 0.35 | 0.15 | 0.05 | ||
2 | 0.45 | 0.25 | 0.05 | |||
1 | 0.30 | 0.10 | ||||
0 | 0.05 |
root | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
5 | 2 | 4 | 5 | 5 | 5 |
4 | 2 | 2 | 4 | 4 | |
3 | 2 | 2 | 3 | ||
2 | 1 | 2 | |||
1 | 1 |
From these tables, the optimal tree can be formed.
Advertisements