- DAA - Discussion
- DAA - Useful Resources
- DAA - Quick Guide
- DAA - Hill Climbing Algorithm
- NP Hard & NP-Complete Classes
- DAA - Cook’s Theorem
- DAA - P and NP Class
- DAA - Vertex Cover
- DAA - Max Cliques
- Deterministic vs. Nondeterministic Computations
- DAA - Sublist Search
- DAA - Fibonacci Search
- DAA - Exponential Search
- DAA - Jump Search
- DAA - Interpolation Search
- DAA - Binary Search
- DAA - Linear Search
- Searching Techniques Introduction
- DAA - Radix Sort
- DAA - Counting Sort
- DAA - Bucket Sort
- DAA - Heap Sort
- DAA - Shell Sort
- DAA - Selection Sort
- DAA - Insertion Sort
- DAA - Bubble Sort
- DAA - Extract Method
- DAA - Heapify Method
- DAA - Insert Method
- DAA - Binary Heap
- Optimal Cost Binary Search Trees
- DAA - Multistage Graph
- DAA - Shortest Paths
- DAA - Spanning Tree
- Travelling Salesperson Approximation Algorithm
- Set Cover Problem
- Vertex Cover Problem
- Approximation Algorithms
- Fisher-Yates Shuffle
- Karger’s Minimum Cut
- Randomized Quick Sort
- Randomized Algorithms
- Travelling Salesman Problem | Dynamic Programming
- Longest Common Subsequence
- DAA - 0-1 Knapsack
- Floyd Warshall Algorithm
- Matrix Chain Multiplication
- DAA - Dynamic Programming
- DAA - Optimal Merge Pattern
- DAA - Job Sequencing with Deadline
- DAA - Fractional Knapsack
- Map Colouring Algorithm
- Dijkstra’s Shortest Path Algorithm
- Kruskal’s Minimal Spanning Tree
- Travelling Salesman Problem
- DAA - Greedy Method
- Towers of Hanoi
- Karatsuba Algorithm
- Strassen’s Matrix Multiplication
- DAA - Binary Search
- DAA - Merge Sort
- DAA - Max-Min Problem
- DAA - Divide & Conquer
- DAA - Space Complexities
- Master’s Theorem
- Time Complexity
- Asymptotic Notations & Apriori Analysis
- DAA - Methodology of Analysis
- DAA - Analysis of Algorithms
- DAA - Introduction
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Design and Analysis Shortest Paths
Dijkstra’s Algorithm
Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for each edge (u, v) Є E).
In the following algorithm, we will use one function Extract-Min(), which extracts the node with the smallest key.
Algorithm: Dijkstra’s-Algorithm (G, w, s) for each vertex v Є G.V v.d := ∞ v.∏ := NIL s.d := 0 S := Ф Q := G.V while Q ≠ Ф u := Extract-Min (Q) S := S U {u} for each vertex v Є G.adj[u] if v.d > u.d + w(u, v) v.d := u.d + w(u, v) v.∏ := u
Analysis
The complexity of this algorithm is fully dependent on the implementation of Extract-Min function. If extract min function is implemented using pnear search, the complexity of this algorithm is O(V2 + E).
In this algorithm, if we use min-heap on which Extract-Min() function works to return the node from Q with the smallest key, the complexity of this algorithm can be reduced further.
Example
Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially, all the vertices except the start vertex are marked by ∞ and the start vertex is marked by 0.
Vertex | Initial | Step1 V1 | Step2 V3 | Step3 V2 | Step4 V4 | Step5 V5 | Step6 V7 | Step7 V8 | Step8 V6 |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ∞ | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
3 | ∞ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
4 | ∞ | ∞ | ∞ | 7 | 7 | 7 | 7 | 7 | 7 |
5 | ∞ | ∞ | ∞ | 11 | 9 | 9 | 9 | 9 | 9 |
6 | ∞ | ∞ | ∞ | ∞ | ∞ | 17 | 17 | 16 | 16 |
7 | ∞ | ∞ | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
8 | ∞ | ∞ | ∞ | ∞ | ∞ | 16 | 13 | 13 | 13 |
9 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | 20 |
Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is
1→ 3→ 7→ 8→ 6→ 9
This path is determined based on predecessor information.
Bellman Ford Algorithm
This algorithm solves the single source shortest path problem of a directed graph G = (V, E) in which the edge weights may be negative. Moreover, this algorithm can be appped to find the shortest path, if there does not exist any negative weighted cycle.
Algorithm: Bellman-Ford-Algorithm (G, w, s) for each vertex v Є G.V v.d := ∞ v.∏ := NIL s.d := 0 for i = 1 to |G.V| - 1 for each edge (u, v) Є G.E if v.d > u.d + w(u, v) v.d := u.d +w(u, v) v.∏ := u for each edge (u, v) Є G.E if v.d > u.d + w(u, v) return FALSE return TRUE
Analysis
The first for loop is used for initiapzation, which runs in O(V) times. The next for loop runs |V - 1| passes over the edges, which takes O(E) times.
Hence, Bellman-Ford algorithm runs in O(V, E) time.
Example
The following example shows how Bellman-Ford algorithm works step by step. This graph has a negative edge but does not have any negative cycle, hence the problem can be solved using this technique.
At the time of initiapzation, all the vertices except the source are marked by ∞ and the source is marked by 0.
In the first step, all the vertices which are reachable from the source are updated by minimum cost. Hence, vertices a and h are updated.
In the next step, vertices a, b, f and e are updated.
Following the same logic, in this step vertices b, f, c and g are updated.
Here, vertices c and d are updated.
Hence, the minimum distance between vertex s and vertex d is 20.
Based on the predecessor information, the path is s→ h→ e→ g→ c→ d
Advertisements