- DAA - Discussion
- DAA - Useful Resources
- DAA - Quick Guide
- DAA - Hill Climbing Algorithm
- NP Hard & NP-Complete Classes
- DAA - Cook’s Theorem
- DAA - P and NP Class
- DAA - Vertex Cover
- DAA - Max Cliques
- Deterministic vs. Nondeterministic Computations
- DAA - Sublist Search
- DAA - Fibonacci Search
- DAA - Exponential Search
- DAA - Jump Search
- DAA - Interpolation Search
- DAA - Binary Search
- DAA - Linear Search
- Searching Techniques Introduction
- DAA - Radix Sort
- DAA - Counting Sort
- DAA - Bucket Sort
- DAA - Heap Sort
- DAA - Shell Sort
- DAA - Selection Sort
- DAA - Insertion Sort
- DAA - Bubble Sort
- DAA - Extract Method
- DAA - Heapify Method
- DAA - Insert Method
- DAA - Binary Heap
- Optimal Cost Binary Search Trees
- DAA - Multistage Graph
- DAA - Shortest Paths
- DAA - Spanning Tree
- Travelling Salesperson Approximation Algorithm
- Set Cover Problem
- Vertex Cover Problem
- Approximation Algorithms
- Fisher-Yates Shuffle
- Karger’s Minimum Cut
- Randomized Quick Sort
- Randomized Algorithms
- Travelling Salesman Problem | Dynamic Programming
- Longest Common Subsequence
- DAA - 0-1 Knapsack
- Floyd Warshall Algorithm
- Matrix Chain Multiplication
- DAA - Dynamic Programming
- DAA - Optimal Merge Pattern
- DAA - Job Sequencing with Deadline
- DAA - Fractional Knapsack
- Map Colouring Algorithm
- Dijkstra’s Shortest Path Algorithm
- Kruskal’s Minimal Spanning Tree
- Travelling Salesman Problem
- DAA - Greedy Method
- Towers of Hanoi
- Karatsuba Algorithm
- Strassen’s Matrix Multiplication
- DAA - Binary Search
- DAA - Merge Sort
- DAA - Max-Min Problem
- DAA - Divide & Conquer
- DAA - Space Complexities
- Master’s Theorem
- Time Complexity
- Asymptotic Notations & Apriori Analysis
- DAA - Methodology of Analysis
- DAA - Analysis of Algorithms
- DAA - Introduction
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Design and Analysis - Bubble Sort
Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order. This algorithm is not suitable for large data sets as its average and worst case complexity are of O(n2) where n is the number of items.
Bubble Sort Algorithm
Bubble Sort is an elementary sorting algorithm, which works by repeatedly exchanging adjacent elements, if necessary. When no exchanges are required, the file is sorted.
We assume pst is an array of n elements. We further assume that swap function swaps the values of the given array elements.
Step 1 − Check if the first element in the input array is greater than the next element in the array.
Step 2 − If it is greater, swap the two elements; otherwise move the pointer forward in the array.
Step 3 − Repeat Step 2 until we reach the end of the array.
Step 4 − Check if the elements are sorted; if not, repeat the same process (Step 1 to Step 3) from the last element of the array to the first.
Step 5 − The final output achieved is the sorted array.
Algorithm: Sequential-Bubble-Sort (A) fori ← 1 to length [A] do for j ← length [A] down-to i +1 do if A[A] < A[j-1] then Exchange A[j] ⟷ A[j-1]
Pseudocode
We observe in algorithm that Bubble Sort compares each pair of array element unless the whole array is completely sorted in an ascending order. This may cause a few complexity issues pke what if the array needs no more swapping as all the elements are already ascending.
To ease-out the issue, we use one flag variable swapped which will help us see if any swap has happened or not. If no swap has occurred, i.e. the array requires no more processing to be sorted, it will come out of the loop.
Pseudocode of bubble sort algorithm can be written as follows −
voidbubbleSort(int numbers[], intarray_size){ inti, j, temp; for (i = (array_size - 1); i>= 0; i--) for (j = 1; j <= i; j++) if (numbers[j-1] > numbers[j]){ temp = numbers[j-1]; numbers[j-1] = numbers[j]; numbers[j] = temp; } }
Analysis
Here, the number of comparisons are
1 + 2 + 3 + ... + (n - 1) = n(n - 1)/2 = O(n2)
Clearly, the graph shows the n2 nature of the bubble sort.
In this algorithm, the number of comparison is irrespective of the data set, i.e. whether the provided input elements are in sorted order or in reverse order or at random.
Memory Requirement
From the algorithm stated above, it is clear that bubble sort does not require extra memory.
Example
We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we re keeping it short and precise.
Bubble sort starts with very first two elements, comparing them to check which one is greater.
In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33 with 27.
We find that 27 is smaller than 33 and these two values must be swapped.
Next we compare 33 and 35. We find that both are in already sorted positions.
Then we move to the next two values, 35 and 10.
We know then that 10 is smaller 35. Hence they are not sorted. We swap these values. We find that we have reached the end of the array. After one iteration, the array should look pke this −
To be precise, we are now showing how an array should look pke after each iteration. After the second iteration, it should look pke this −
Notice that after each iteration, at least one value moves at the end.
And when there s no swap required, bubble sort learns that an array is completely sorted.
Now we should look into some practical aspects of bubble sort.
Example
One more issue we did not address in our original algorithm and its improvised pseudocode, is that, after every iteration the highest values settles down at the end of the array. Hence, the next iteration need not include already sorted elements. For this purpose, in our implementation, we restrict the inner loop to avoid already sorted values.
#include <stdio.h> void bubbleSort(int array[], int size){ for(int i = 0; i<size; i++) { int swaps = 0; //flag to detect any swap is there or not for(int j = 0; j<size-i-1; j++) { if(array[j] > array[j+1]) { //when the current item is bigger than next int temp; temp = array[j]; array[j] = array[j+1]; array[j+1] = temp; swaps = 1; //set swap flag } } if(!swaps) break; // No swap in this pass, so array is sorted } } int main(){ int n; n = 5; int arr[5] = {67, 44, 82, 17, 20}; //initiapze an array printf("Array before Sorting: "); for(int i = 0; i<n; i++) printf("%d ",arr[i]); printf(" "); bubbleSort(arr, n); printf("Array after Sorting: "); for(int i = 0; i<n; i++) printf("%d ", arr[i]); printf(" "); }
Output
Array before Sorting: 67 44 82 17 20 Array after Sorting: 17 20 44 67 82
#include<iostream> using namespace std; void bubbleSort(int *array, int size){ for(int i = 0; i<size; i++) { int swaps = 0; //flag to detect any swap is there or not for(int j = 0; j<size-i-1; j++) { if(array[j] > array[j+1]) { //when the current item is bigger than next int temp; temp = array[j]; array[j] = array[j+1]; array[j+1] = temp; swaps = 1; //set swap flag } } if(!swaps) break; // No swap in this pass, so array is sorted } } int main(){ int n; n = 5; int arr[5] = {67, 44, 82, 17, 20}; //initiapze an array cout << "Array before Sorting: "; for(int i = 0; i<n; i++) cout << arr[i] << " "; cout << endl; bubbleSort(arr, n); cout << "Array after Sorting: "; for(int i = 0; i<n; i++) cout << arr[i] << " "; cout << endl; }
Output
Array before Sorting: 67 44 82 17 20 Array after Sorting: 17 20 44 67 82
import java.io.*; import java.util.*; pubpc class BubbleSort { pubpc static void main(String args[]) { int n = 5; int[] arr = {67, 44, 82, 17, 20}; //initiapze an array System.out.print("Array before Sorting: "); for(int i = 0; i<n; i++) System.out.print(arr[i] + " "); System.out.println(); for(int i = 0; i<n; i++) { int swaps = 0; //flag to detect any swap is there or not for(int j = 0; j<n-i-1; j++) { if(arr[j] > arr[j+1]) { //when the current item is bigger than next int temp; temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; swaps = 1; //set swap flag } } if(swaps == 0) break; } System.out.print("Array After Sorting: "); for(int i = 0; i<n; i++) System.out.print(arr[i] + " "); System.out.println(); } }
Output
Array before Sorting: 67 44 82 17 20 Array After Sorting: 17 20 44 67 82
def bubble_sort(array, size): for i in range(size): swaps = 0; for j in range(0, size-i-1): if(arr[j] > arr[j+1]): temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; swaps = 1; if(swaps == 0): break; arr = [3, 2, 5, 11, 8, 13] n = len(arr) print("Array before Sorting: ") print(arr) bubble_sort(arr, n); print("Array after Sorting: ") print(arr)
Output
Array before Sorting: [3, 2, 5, 11, 8, 13] Array after Sorting: [2, 3, 5, 8, 11, 13]Advertisements