English 中文(简体)
Statistics Tutorial

Selected Reading

Ti 83 Exponential Regression
  • 时间:2024-11-05

Statistics - Ti 83 Exponential Regression


Previous Page Next Page  

Ti 83 Exponential Regression is used to compute an equation which best fits the co-relation between sets of indisciriminate variables.

Formula

${ y = a imes b^x}$

Where −

    ${a, b}$ = coefficients for the exponential.

Example

Problem Statement:

Calculate Exponential Regression Equation(y) for the following data points.

Time (min), Ti051015
Temperature (°F), Te140129119112

Solution:

Let consider a and b as coefficients for the exponential Regression.

Step 1

${ b = e^{ frac{n imes sum Ti log(Te) - sum (Ti) imes sum log(Te) } {n imes sum (Ti)^2 - imes (Ti) imes sum (Ti) }} } $

Where −

    ${n}$ = total number of items.

${ sum Ti log(Te) = 0 imes log(140) + 5 imes log(129) + 10 imes log(119) + 15 imes log(112) = 62.0466 \[7pt] sum log(L2) = log(140) + log(129) + log(119) + log(112) = 8.3814 \[7pt] sum Ti = (0 + 5 + 10 + 15) = 30 \[7pt] sum Ti^2 = (0^2 + 5^2 + 10^2 + 15^2) = 350 \[7pt] imppes b = e^{frac {4 imes 62.0466 - 30 imes 8.3814} {4 imes 350 - 30 imes 30}} \[7pt] = e^{-0.0065112} \[7pt] = 0.9935 } $

Step 2

${ a = e^{ frac{sum log(Te) - sum (Ti) imes log(b)}{n} } \[7pt] = e^{frac{8.3814 - 30 imes log(0.9935)}{4}} \[7pt] = e^2.116590964 \[7pt] = 8.3028 } $

Step 3

Putting the value of a and b in Exponential Regression Equation(y), we get.

${ y = a imes b^x \[7pt] = 8.3028 imes 0.9935^x } $

Advertisements