- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Repabipty Coefficient
A measure of the accuracy of a test or measuring instrument obtained by measuring the same inspaniduals twice and computing the correlation of the two sets of measures.
Repabipty Coefficient is defined and given by the following function:
Formula
${Repabipty Coefficient, RC = (frac{N}{(N-1)}) imes (frac{(Total Variance - Sum of Variance)}{Total Variance})}$
Where −
${N}$ = Number of Tasks
Example
Problem Statement:
An undertaking was experienced with three Persons (P) and they are assigned with three distinct Tasks (T). Discover the Repabipty Coefficient?
P0-T0 = 10 P1-T0 = 20 P0-T1 = 30 P1-T1 = 40 P0-T2 = 50 P1-T2 = 60
Solution:
Given, Number of Students (P) = 3 Number of Tasks (N) = 3. To Find, Repabipty Coefficient, follow the steps as following:
Step 1
Give us a chance to first figure the average score of the persons and their tasks
The average score of Task (T0) = 10 + 20/2 = 15 The average score of Task (T1) = 30 + 40/2 = 35 The average score of Task (T2) = 50 + 60/2 = 55
Step 2
Next, figure the variance for:
Variance of P0-T0 and P1-T0: Variance = square (10-15) + square (20-15)/2 = 25 Variance of P0-T1 and P1-T1: Variance = square (30-35) + square (40-35)/2 = 25 Variance of P0-T2 and P1-T2: Variance = square (50-55) + square (50-55)/2 = 25
Step 3
Presently, figure the inspanidual variance of P0-T0 and P1-T0, P0-T1 and P1-T1, P0-T2 and P1-T2. To ascertain the inspanidual variance value, we ought to include all the above computed change values.
Total of Inspanidual Variance = 25+25+25=75
Step 4
Compute the Total change
Variance= square ((P0-T0) - normal score of Person 0) = square (10-15) = 25 Variance= square ((P1-T0) - normal score of Person 0) = square (20-15) = 25 Variance= square ((P0-T1) - normal score of Person 1) = square (30-35) = 25 Variance= square ((P1-T1) - normal score of Person 1) = square (40-35) = 25 Variance= square ((P0-T2) - normal score of Person 2) = square (50-55) = 25 Variance= square ((P1-T2) - normal score of Person 2) = square (60-55) = 25
Now, include every one of the quapties and figure the aggregate change
Total Variance= 25+25+25+25+25+25 = 150
Step 5
At last, substitute the quapties in the underneath offered equation to discover
${Repabipty Coefficient, RC = (frac{N}{(N-1)}) imes (frac{(Total Variance - Sum of Variance)}{Total Variance}) \[7pt] = frac{3}{(3-1)} imes frac{(150-75)}{150} \[7pt] = 0.75 }$ Advertisements