English 中文(简体)
Statistics Tutorial

Selected Reading

Deciles Statistics
  • 时间:2024-12-22

Statistics - Deciles Statistics


Previous Page Next Page  

A system of spaniding the given random distribution of the data or values in a series into ten groups of similar frequency is known as deciles.

Formula

${D_i = l + frac{h}{f}(frac{iN}{10} - c); i = 1,2,3...,9}$

Where −

    ${l}$ = lower boundry of deciles group.

    ${h}$ = width of deciles group.

    ${f}$ = frequency of deciles group.

    ${N}$ = total number of observations.

    ${c}$ = comulative frequency preceding deciles group.

Example

Problem Statement:

Calculate the deciles of the distribution for the following table:

 fiFi
[50-60]88
[60-60]1018
[70-60]1634
[80-60]1448
[90-60]1058
[100-60]563
[110-60]265
 65 

Solution:

Calculation of First Decile

$ {frac{65 imes 1}{10} = 6.5 \[7pt] , D_1= 50 + frac{6.5 - 0}{8} imes 10 , \[7pt] , = 58.12}$

Calculation of Second Decile

$ {frac{65 imes 2}{10} = 13 \[7pt] , D_2= 60 + frac{13 - 8}{10} imes 10 , \[7pt] , = 65}$

Calculation of Third Decile

$ {frac{65 imes 3}{10} = 19.5 \[7pt] , D_3= 70 + frac{19.5 - 18}{16} imes 10 , \[7pt] , = 70.94}$

Calculation of Fourth Decile

$ {frac{65 imes 4}{10} = 26 \[7pt] , D_4= 70 + frac{26 - 18}{16} imes 10 , \[7pt] , = 75}$

Calculation of Fifth Decile

$ {frac{65 imes 5}{10} = 32.5 \[7pt] , D_5= 70 + frac{32.5 - 18}{16} imes 10 , \[7pt] , = 79.06}$

Calculation of Sixth Decile

$ {frac{65 imes 6}{10} = 39 \[7pt] , D_6= 70 + frac{39 - 34}{14} imes 10 , \[7pt] , = 83.57}$

Calculation of Seventh Decile

$ {frac{65 imes 7}{10} = 45.5 \[7pt] , D_7= 80 + frac{45.5 - 34}{14} imes 10 , \[7pt] , = 88.21}$

Calculation of Eighth Decile

$ {frac{65 imes 8}{10} = 52 \[7pt] , D_8= 90 + frac{52 - 48}{10} imes 10 , \[7pt] , = 94}$

Calculation of Nineth Decile

$ {frac{65 imes 9}{10} = 58.5 \[7pt] , D_9= 100 + frac{58.5 - 58}{5} imes 10 , \[7pt] , = 101}$ Advertisements