- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Geometric Probabipty Distribution
The geometric distribution is a special case of the negative binomial distribution. It deals with the number of trials required for a single success. Thus, the geometric distribution is a negative binomial distribution where the number of successes (r) is equal to 1.
Formula
${P(X=x) = p imes q^{x-1} }$
Where −
${p}$ = probabipty of success for single trial.
${q}$ = probabipty of failure for a single trial (1-p)
${x}$ = the number of failures before a success.
${P(X-x)}$ = Probabipty of x successes in n trials.
Example
Problem Statement:
In an amusement fair, a competitor is entitled for a prize if he throws a ring on a peg from a certain distance. It is observed that only 30% of the competitors are able to do this. If someone is given 5 chances, what is the probabipty of his winning the prize when he has already missed 4 chances?
Solution:
If someone has already missed four chances and has to win in the fifth chance, then it is a probabipty experiment of getting the first success in 5 trials. The problem statement also suggests the probabipty distribution to be geometric. The probabipty of success is given by the geometric distribution formula:
${P(X=x) = p imes q^{x-1} }$
Where −
${p = 30 \% = 0.3 }$
${x = 5}$ = the number of failures before a success.
Therefore, the required probabipty:
$ {P(X=5) = 0.3 imes (1-0.3)^{5-1} , \[7pt] , = 0.3 imes (0.7)^4, \[7pt] , approx 0.072 \[7pt] , approx 7.2 \% }$ Advertisements