Statistics Tutorial
Selected Reading
- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics Formulas
Statistics - Formulas
Following is the pst of statistics formulas used in the Tutorialspoint statistics tutorials. Each formula is pnked to a web page that describe how to use the formula.
A
- $ {R_{adj}^2 = 1 - [frac{(1-R^2)(n-1)}{n-k-1}]} $
- $ ar{x} = frac{_{sum {x}}}{N} $
- Median = Value of $ frac{N+1}{2})^{th} item $
- $ {Coefficient of Range = frac{L-S}{L+S}} $
B
- $ {MLE = frac{S}{T}} $
- $ {P(X-x)} = ^{n}{C_x}{Q^{n-x}}.{p^x} $
C
- $ {1-frac{1}{k^2}} $
- $ {P_n = (n-1)!} $
- $ {k = frac{p_0 - p_e}{1-p_e} = 1 - frac{1-p_o}{1-p_e}} $
- $ {C(n,r) = frac{n!}{r!(n-r)!}} $
- $ {^nC_r = frac{(n+r-1)!}{r!(n-1)!} } $
- f(x) = $ egin{cases} 1/(b-a), & ext{when $ a le x le b $} \ 0, & ext{when $x lt a$ or $x gt b$} end{cases} $
- $ {CV = frac{sigma}{X} imes 100 } $
- $ {r = frac{N sum xy - (sum x)(sum y)}{sqrt{[Nsum x^2 - (sum x)^2][Nsum y^2 - (sum y)^2]}} } $
- $ {F(x,lambda) = sum_{k=0}^x frac{e^{- lambda} lambda ^x}{k!}} $
D
- $ {D_i = l + frac{h}{f}(frac{iN}{10} - c); i = 1,2,3...,9} $
- $ {D_i = l + frac{h}{f}(frac{iN}{10} - c); i = 1,2,3...,9} $
F
- $ {n! = 1 imes 2 imes 3 ... imes n} $
G
- $ G.M. = sqrt[n]{x_1x_2x_3...x_n} $
- $ {P(X=x) = p imes q^{x-1} } $
- $ {X_{GM} = frac{sum x}{N}} $
H
- $ H.M. = frac{W}{sum (frac{W}{X})} $
- $ H.M. = frac{W}{sum (frac{W}{X})} $
- $ {h(x;N,n,K) = frac{[C(k,x)][C(N-k,n-x)]}{C(N,n)}} $
I
- $ {mu = ar x pm Z_{frac{alpha}{2}}frac{sigma}{sqrt n}} $
L
- $ {pi(x) = frac{e^{alpha + eta x}}{1 + e^{alpha + eta x}}} $
M
- $ {MD} =frac{1}{N} sum{|X-A|} = frac{sum{|D|}}{N} $
- $ {Mean Difference= frac{sum x_1}{n} - frac{sum x_2}{n}} $
- $ {P_r = frac{n!}{(n_1!)(n_2!)...(n_x!)} {P_1}^{n_1}{P_2}^{n_2}...{P_x}^{n_x}} $
N
- $ {f(x) = P(X=x) = (x-1r-1)(1-p)x-rpr} $
- $ {y = frac{1}{sqrt {2 pi}}e^{frac{-(x - mu)^2}{2 sigma}} } $
O
- $ { z = frac {hat p -p_o}{sqrt{frac{p_o(1-p_o)}{n}}} } $
P
- $ { {^nP_r = frac{n!}{(n-r)!} } $
- $ {^nP_r = n^r } $
- $ {P(X-x)} = {e^{-m}}.frac{m^x}{x!} $
- $ {P(A) = frac{Number of favourable cases}{Total number of equally pkely cases} = frac{m}{n}} $
- $ {P(A or B) = P(A) + P(B) \[7pt] P (A cup B) = P(A) + P(B)} $
- $ {P(A and B) = P(A) imes P(B) \[7pt] P (AB) = P(A) imes P(B)} $
- $ {P(A_i/B) = frac{P(A_i) imes P (B/A_i)}{sum_{i=1}^k P(A_i) imes P (B/A_i)}} $
- $ {P(a le X le b) = int_a^b f(x) d_x} $
R
- $ {Repabipty Coefficient, RC = (frac{N}{(N-1)}) imes (frac{(Total Variance - Sum of Variance)}{Total Variance})} $
- $ {RSS = sum_{i=0}^n(epsilon_i)^2 = sum_{i=0}^n(y_i - (alpha + eta x_i))^2} $
S
- $ { H = sum[(p_i) imes ln(p_i)] } $
- $ sigma = sqrt{frac{sum_{i=1}^n{(x-ar x)^2}}{N-1}} $
- $ SE_ar{x} = frac{s}{sqrt{n}} $
- $ {Sum of Squares = sum(x_i - ar x)^2 } $
T
- $ mu = frac{sum {X_i}}{n} $