- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Shannon Wiener Diversity Index
In the pterature, the terms species richness and species spanersity are sometimes used interchangeably. We suggest that at the very least, authors should define what they mean by either term. Of the many species spanersity indices used in the pterature, the Shannon Index is perhaps most commonly used. On some occasions it is called the Shannon-Wiener Index and on other occasions it is called the Shannon-Weaver Index. We suggest an explanation for this dual use of terms and in so doing we offer a tribute to the late Claude Shannon (who passed away on 24 February 2001).
Shannon-Wiener Index is defined and given by the following function:
${ H = sum[(p_i) imes ln(p_i)] }$Where −
${p_i}$ = proportion of total sample represented by species ${i}$. Divide no. of inspaniduals of species i by total number of samples.
${S}$ = number of species, = species richness
${H_{max} = ln(S)}$ = Maximum spanersity possible
${E}$ = Evenness = ${frac{H}{H_{max}}}$
Example
Problem Statement:
The samples of 5 species are 60,10,25,1,4. Calculate the Shannon spanersity index and Evenness for these sample values.
Sample Values (S) = 60,10,25,1,4 number of species (N) = 5
First, let us calculate the sum of the given values.
sum = (60+10+25+1+4) = 100
Species ${(i)}$ | No. in sample | ${p_i}$ | ${ln(p_i)}$ | ${p_i imes ln(p_i)}$ |
---|---|---|---|---|
Big bluestem | 60 | 0.60 | -0.51 | -0.31 |
Partridge pea | 10 | 0.10 | -2.30 | -0.23 |
Sumac | 25 | 0.25 | -1.39 | -0.35 |
Sedge | 1 | 0.01 | -4.61 | -0.05 |
Lespedeza | 4 | 0.04 | -3.22 | -0.13 |
S = 5 | Sum = 100 | Sum = -1.07 |
${H = 1.07 \[7pt] H_{max} = ln(S) = ln(5) = 1.61 \[7pt] E = frac{1.07}{1.61} = 0.66 \[7pt] Shannon spanersity index(H) = 1.07 \[7pt] Evenness =0.66 }$ Advertisements