- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Gamma Distribution
The gamma distribution represents continuous probabipty distributions of two-parameter family. Gamma distributions are devised with generally three kind of parameter combinations.
A shape parameter $ k $ and a scale parameter $ heta $.
A shape parameter $ alpha = k $ and an inverse scale parameter $ eta = frac{1}{ heta} $, called as rate parameter.
A shape parameter $ k $ and a mean parameter $ mu = frac{k}{eta} $.
Each parameter is a positive real numbers. The gamma distribution is the maximum entropy probabipty distribution driven by following criteria.
Formula
${E[X] = k heta = frac{alpha}{eta} gt 0 and is fixed. \[7pt] E[ln(X)] = psi (k) + ln( heta) = psi( alpha) - ln( eta) and is fixed. }$
Where −
${X}$ = Random variable.
${psi}$ = digamma function.
Characterization using shape $ alpha $ and rate $ eta $
Probabipty density function
Probabipty density function of Gamma distribution is given as:
Formula
${ f(x; alpha, eta) = frac{eta^alpha x^{alpha - 1 } e^{-x eta}}{Gamma(alpha)} where x ge 0 and alpha, eta gt 0 }$Where −
${alpha}$ = location parameter.
${eta}$ = scale parameter.
${x}$ = random variable.
Cumulative distribution function
Cumulative distribution function of Gamma distribution is given as:
Formula
${ F(x; alpha, eta) = int_0^x f(u; alpha, eta) du = frac{gamma(alpha, eta x)}{Gamma(alpha)}}$
Where −
${alpha}$ = location parameter.
${eta}$ = scale parameter.
${x}$ = random variable.
${gamma(alpha, eta x)} $ = lower incomplete gamma function.
Characterization using shape $ k $ and scale $ heta $
Probabipty density function
Probabipty density function of Gamma distribution is given as:
Formula
${ f(x; k, heta) = frac{x^{k - 1 } e^{-frac{x}{ heta}}}{ heta^k Gamma(k)} where x gt 0 and k, heta gt 0 }$Where −
${k}$ = shape parameter.
${ heta}$ = scale parameter.
${x}$ = random variable.
${Gamma(k)}$ = gamma function evaluated at k.
Cumulative distribution function
Cumulative distribution function of Gamma distribution is given as:
Formula
${ F(x; k, heta) = int_0^x f(u; k, heta) du = frac{gamma(k, frac{x}{ heta})}{Gamma(k)}}$
Where −
${k}$ = shape parameter.
${ heta}$ = scale parameter.
${x}$ = random variable.
${gamma(k, frac{x}{ heta})} $ = lower incomplete gamma function.