- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Co-efficient of Variation
Coefficient of Variation
Standard variation is an absolute measure of dispersion. When comparison has to be made between two series then the relative measure of dispersion, known as coeff.of variation is used.
Coefficient of Variation, CV is defined and given by the following function:
Formula
${CV = frac{sigma}{X} imes 100 }$
Where −
${CV}$ = Coefficient of Variation.
${sigma}$ = standard deviation.
${X}$ = mean.
Example
Problem Statement:
From the following data. Identify the risky project, is more risky:
Year | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Project X (Cash profit in Rs. lakh) | 10 | 15 | 25 | 30 | 55 |
Project Y (Cash profit in Rs. lakh) | 5 | 20 | 40 | 40 | 30 |
Solution:
In order to identify the risky project, we have to identify which of these projects is less consistent in yielding profits. Hence we work out the coefficient of variation.
Project X | Project y | ||||
---|---|---|---|---|---|
${X}$ | ${X_i - ar X}$ ${x}$ | ${x^2}$ | ${Y}$ | ${Y_i - ar Y}$ ${y}$ | ${y^2}$ |
10 | -17 | 289 | 5 | -22 | 484 |
15 | -12 | 144 | 20 | -7 | 49 |
25 | -2 | 4 | 40 | 13 | 169 |
30 | 3 | 9 | 40 | 13 | 169 |
55 | 28 | 784 | 30 | 3 | 9 |
${sum X = 135}$ | ${sum x^2 = 1230}$ | ${sum Y = 135}$ | ${sum y^2 = 880}$ | ||
Project X
${Here ar X= frac{sum X}{N} \[7pt] = frac{sum 135}{5} = 27 \[7pt] and sigma_x = sqrt {frac{sum X^2}{N}} \[7pt] Rightarrow sigma_x = sqrt {frac{1230}{5}} \[7pt] = sqrt{246} = 15.68 \[7pt] Rightarrow CV_x = frac{sigma_x}{X} imes 100 \[7pt] = frac{15.68}{27} imes 100 = 58.07}$Project Y
${Here ar Y= frac{sum Y}{N} \[7pt] = frac{sum 135}{5} = 27 \[7pt] and sigma_y = sqrt {frac{sum Y^2}{N}} \[7pt] Rightarrow sigma_y = sqrt {frac{880}{5}} \[7pt] = sqrt{176} = 13.26 \[7pt] Rightarrow CV_y = frac{sigma_y}{Y} imes 100 \[7pt] = frac{13.25}{27} imes 100 = 49.11}$Since coeff.of variation is higher for project X than for project Y, hence despite the average profits being same, project X is more risky.
Advertisements