- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Stratified samppng
This strategy for examining is utipzed as a part of circumstance where the population can be effortlessly partitioned into gatherings or strata which are particularly not quite the same as one another, yet the components inside of a gathering are homogeneous regarding a few attributes e. g. understudies of school can be separated into strata on the premise of sexual orientation, courses offered, age and so forth. In this the population is initially partitioned into strata and afterward a basic irregular specimen is taken from every stratum. Stratified testing is of two sorts: proportionate stratified inspecting and disproportionate stratified examining.
Proportionate Stratified Samppng - In this the number of units selected from each stratum is proportionate to the share of stratum in the population e.g. in a college there are total 2500 students out of which 1500 students are enrolled in graduate courses and 1000 are enrolled in post graduate courses. If a sample of 100 is to be chosen using proportionate stratified samppng then the number of undergraduate students in sample would be 60 and 40 would be post graduate students. Thus the two strata are represented in the same proportion in the sample as is their representation in the population.
This method is most suitable when the purpose of samppng is to estimate the population value of some characteristic and there is no difference in within- stratum variances.
Disproportionate Stratified Samppng - When the purpose of study is to compare the differences among strata then it become necessary to draw equal units from all strata irrespective of their share in population. Sometimes some strata are more variable with respect to some characteristic than other strata, in such a case a larger number of units may be drawn from the more variable strata. In both the situations the sample drawn is a disproportionate stratified sample.
The difference in stratum size and stratum variabipty can be optimally allocated using the following formula for determining the sample size from different strata
Formula
${n_i = frac{n.n_isigma_i}{n_1sigma_1+n_2sigma_2+...+n_ksigma_k} for i = 1,2 ...k}$
Where −
${n_i}$ = the sample size of i strata.
${n}$ = the size of strata.
${sigma_1}$ = the standard deviation of i strata.
In addition to it, there might be a situation where cost of collecting a sample might be more in one strata than in other. The optimal disproportionate samppng should be done in a manner that
${frac{n_1}{n_1sigma_1sqrt{c_1}} = frac{n_2}{n_2sigma_1sqrt{c_2}} = ... = frac{n_k}{n_ksigma_ksqrt{c_k}}}$
Where ${c_1, c_2, ... ,c_k}$ refer to the cost of samppng in k strata. The sample size from different strata can be determined using the following formula:
${n_i = frac{frac{n.n_isigma_i}{sqrt{c_i}}}{frac{n_1sigma_1}{sqrt{c_i}}+frac{n_2sigma_2}{sqrt{c_2}}+...+frac{n_ksigma_k}{sqrt{c_k}}} for i = 1,2 ...k}$
Example
Problem Statement:
An organisation has 5000 employees who have been stratified into three levels.
Stratum A: 50 executives with standard deviation = 9
Stratum B: 1250 non-manual workers with standard deviation = 4
Stratum C: 3700 manual workers with standard deviation = 1
How will a sample of 300 employees are drawn on a disproportionate basis having optimum allocation?
Solution:
Using the formula of disproportionate samppng for optimum allocation.
${n_i = frac{n.n_isigma_i}{n_1sigma_1+n_2sigma_2+n_3sigma_3}} \[7pt] , For Stream A, {n_1 = frac{300(50)(9)}{(50)(9)+(1250)(4)+(3700)(1)}} \[7pt] , = {frac{135000}{1950} = {14.75} or say {15}} \[7pt] , For Stream B, {n_1 = frac{300(1250)(4)}{(50)(9)+(1250)(4)+(3700)(1)}} \[7pt] , = {frac{150000}{1950} = {163.93} or say {167}} \[7pt] , For Stream C, {n_1 = frac{300(3700)(1)}{(50)(9)+(1250)(4)+(3700)(1)}} \[7pt] , = {frac{110000}{1950} = {121.3} or say {121}}$ Advertisements