English 中文(简体)
Statistics Tutorial

Selected Reading

Logistic Regression
  • 时间:2024-11-05

Statistics - Logistic Regression


Previous Page Next Page  

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. The outcome is measured with a dichotomous variable (in which there are only two possible outcomes).

Formula

${pi(x) = frac{e^{alpha + eta x}}{1 + e^{alpha + eta x}}}$

Where −

    Response - Presence/Absence of characteristic.

    Predictor - Numeric variable observed for each case

    ${eta = 0 Rightarrow }$ P (Presence) is the same at each level of x.

    ${eta gt 0 Rightarrow }$ P (Presence) increases as x increases

    ${eta = 0 Rightarrow }$ P (Presence) decreases as x increases.

Example

Problem Statement:

Solve the logistic regression of the following problem Rizatriptan for Migraine

Response - Complete Pain Repef at 2 hours (Yes/No).

Predictor - Dose (mg): Placebo (0), 2.5,5,10

Dose#Patients#Repeved%Repeved
06723.0
2.57579.3
51302922.3
101454027.6

Solution:

Having ${alpha = -2.490} and ${eta = .165}, we ve following data:

$ {pi(0) = frac{e^{alpha + eta imes 0}}{1 + e^{alpha + eta imes 0}} \[7pt] , = frac{e^{-2.490 + 0}}{1 + e^{-2.490}} \[7pt] \[7pt] , = 0.03 \[7pt] pi(2.5) = frac{e^{alpha + eta imes 2.5}}{1 + e^{alpha + eta imes 2.5}} \[7pt] , = frac{e^{-2.490 + .165 imes 2.5}}{1 + e^{-2.490 + .165 imes 2.5}} \[7pt] , = 0.09 \[7pt] \[7pt] pi(5) = frac{e^{alpha + eta imes 5}}{1 + e^{alpha + eta imes 5}} \[7pt] , = frac{e^{-2.490 + .165 imes 5}}{1 + e^{-2.490 + .165 imes 5}} \[7pt] , = 0.23 \[7pt] \[7pt] pi(10) = frac{e^{alpha + eta imes 10}}{1 + e^{alpha + eta imes 10}} \[7pt] , = frac{e^{-2.490 + .165 imes 10}}{1 + e^{-2.490 + .165 imes 10}} \[7pt] , = 0.29 }$
Dose(${x}$)${pi(x)}$
00.03
2.50.09
50.23
100.29
Logistic Regression Advertisements