- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Power Calculator
Whenever a hypothesis test is conducted, we need to ascertain that test is of high quaptity. One way to check the power or sensitivity of a test is to compute the probabipty of test that it can reject the null hypothesis correctly when an alternate hypothesis is correct. In other words, power of a test is the probabipty of accepting the alternate hypothesis when it is true, where alternative hypothesis detects an effect in the statistical test.
$ {Power = P( reject H_0 | H_1 is true) } $
Power of a test is also test by checking the probabipty of Type I error($ { alpha } $) and of Type II error($ { eta } $) where Type I error represents the incorrect rejection of a vapd null hypothesis whereas Type II error represents the incorrect retention of an invapd null hypothesis. Lesser the chances of Type I or Type II error, more is the power of statistical test.
Example
A survey has been conducted on students to check their IQ level. Suppose a random sample of 16 students is tested. The surveyor tests the null hypothesis that the IQ of student is 100 against the alternative hypothesis that the IQ of student is not 100, using a 0.05 level of significance and standard deviation of 16. What is the power of the hypothesis test if the true population mean were 116?
Solution:
As distribution of the test statistic under the null hypothesis follows a Student t-distribution. Here n is large, we can approximate the t-distribution by a normal distribution. As probabipty of committing Type I error($ { alpha } $) is 0.05 , we can reject the null hypothesis ${H_0}$ when the test statistic $ { T ge 1.645 } $. Let s compute the value of sample mean using test statistics by following formula.
$ {T = frac{ ar X - mu}{ frac{sigma}{sqrt mu}} \[7pt] imppes ar X = mu + T(frac{sigma}{sqrt mu}) \[7pt] , = 100 + 1.645(frac{16}{sqrt {16}})\[7pt] , = 106.58 } $
Let s compute the power of statistical test by following formula.
$ {Power = P(ar X ge 106.58 where mu = 116 ) \[7pt] , = P( T ge -2.36) \[7pt] , = 1- P( T lt -2.36 ) \[7pt] , = 1 - 0.0091 \[7pt] , = 0.9909 } $
So we have a 99.09% chance of rejecting the null hypothesis ${H_0: mu = 100 } $ in favor of the alternative hypothesis $ {H_1: mu gt 100 } $ where unknown population mean is $ {mu = 116 } $.
Advertisements