- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Mean Deviation
Referred to as average deviation, it is defined as the sum of the deviations(ignoring signs) from an average spanided by the number of items in a distribution The average can be mean, median or mode. Theoretically median is d best average of choice because sum of deviations from median is minimum, provided signs are ignored. However, practically speaking, arithmetic mean is the most commonly used average for calculating mean deviation and is denoted by the symbol ${MD}$.
We re going to discuss methods to compute the Mean Deviation for three types of series:
Inspanidual Data Series
When data is given on inspanidual basis. Following is an example of inspanidual series:
Items | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|
Discrete Data Series
When data is given alongwith their frequencies. Following is an example of discrete series:
Items | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|---|---|---|---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 | 12 | 0 | 5 | 7 |
Continuous Data Series
When data is given based on ranges alongwith their frequencies. Following is an example of continous series:
Items | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 |
---|---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 | 12 |