- Statistics - Discussion
- Z table
- Weak Law of Large Numbers
- Venn Diagram
- Variance
- Type I & II Error
- Trimmed Mean
- Transformations
- Ti 83 Exponential Regression
- T-Distribution Table
- Sum of Square
- Student T Test
- Stratified sampling
- Stem and Leaf Plot
- Statistics Notation
- Statistics Formulas
- Statistical Significance
- Standard normal table
- Standard Error ( SE )
- Standard Deviation
- Skewness
- Simple random sampling
- Signal to Noise Ratio
- Shannon Wiener Diversity Index
- Scatterplots
- Sampling methods
- Sample planning
- Root Mean Square
- Residual sum of squares
- Residual analysis
- Required Sample Size
- Reliability Coefficient
- Relative Standard Deviation
- Regression Intercept Confidence Interval
- Rayleigh Distribution
- Range Rule of Thumb
- Quartile Deviation
- Qualitative Data Vs Quantitative Data
- Quadratic Regression Equation
- Process Sigma
- Process Capability (Cp) & Process Performance (Pp)
- Probability Density Function
- Probability Bayes Theorem
- Probability Multiplecative Theorem
- Probability Additive Theorem
- Probability
- Power Calculator
- Pooled Variance (r)
- Poisson Distribution
- Pie Chart
- Permutation with Replacement
- Permutation
- Outlier Function
- One Proportion Z Test
- Odd and Even Permutation
- Normal Distribution
- Negative Binomial Distribution
- Multinomial Distribution
- Means Difference
- Mean Deviation
- Mcnemar Test
- Logistic Regression
- Log Gamma Distribution
- Linear regression
- Laplace Distribution
- Kurtosis
- Kolmogorov Smirnov Test
- Inverse Gamma Distribution
- Interval Estimation
- Individual Series Arithmetic Mode
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mean
- Hypothesis testing
- Hypergeometric Distribution
- Histograms
- Harmonic Resonance Frequency
- Harmonic Number
- Harmonic Mean
- Gumbel Distribution
- Grand Mean
- Goodness of Fit
- Geometric Probability Distribution
- Geometric Mean
- Gamma Distribution
- Frequency Distribution
- Factorial
- F Test Table
- F distribution
- Exponential distribution
- Dot Plot
- Discrete Series Arithmetic Mode
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mean
- Deciles Statistics
- Data Patterns
- Data collection - Case Study Method
- Data collection - Observation
- Data collection - Questionaire Designing
- Data collection
- Cumulative Poisson Distribution
- Cumulative plots
- Correlation Co-efficient
- Co-efficient of Variation
- Cumulative Frequency
- Continuous Series Arithmetic Mode
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mean
- Continuous Uniform Distribution
- Comparing plots
- Combination with replacement
- Combination
- Cluster sampling
- Circular Permutation
- Chi Squared table
- Chi-squared Distribution
- Central limit theorem
- Boxplots
- Black-Scholes model
- Binomial Distribution
- Beta Distribution
- Best Point Estimation
- Bar Graph
- Arithmetic Range
- Arithmetic Mode
- Arithmetic Median
- Arithmetic Mean
- Analysis of Variance
- Adjusted R-Squared
- Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Statistics - Hypothesis testing
A statistical hypothesis is an assumption about a population which may or may not be true. Hypothesis testing is a set of formal procedures used by statisticians to either accept or reject statistical hypotheses. Statistical hypotheses are of two types:
Null hypothesis, ${H_0}$ - represents a hypothesis of chance basis.
Alternative hypothesis, ${H_a}$ - represents a hypothesis of observations which are influenced by some non-random cause.
Example
suppose we wanted to check whether a coin was fair and balanced. A null hypothesis might say, that half fpps will be of head and half will of tails whereas alternative hypothesis might say that fpps of head and tail may be very different.
$ H_0: P = 0.5 \[7pt] H_a: P e 0.5 $For example if we fppped the coin 50 times, in which 40 Heads and 10 Tails results. Using result, we need to reject the null hypothesis and would conclude, based on the evidence, that the coin was probably not fair and balanced.
Hypothesis Tests
Following formal process is used by statistican to determine whether to reject a null hypothesis, based on sample data. This process is called hypothesis testing and is consists of following four steps:
State the hypotheses - This step involves stating both null and alternative hypotheses. The hypotheses should be stated in such a way that they are mutually exclusive. If one is true then other must be false.
Formulate an analysis plan - The analysis plan is to describe how to use the sample data to evaluate the null hypothesis. The evaluation process focuses around a single test statistic.
Analyze sample data - Find the value of the test statistic (using properties pke mean score, proportion, t statistic, z-score, etc.) stated in the analysis plan.
Interpret results - Apply the decisions stated in the analysis plan. If the value of the test statistic is very unpkely based on the null hypothesis, then reject the null hypothesis.