- Z-Transforms Properties
- Z-Transforms (ZT)
- Region of Convergence
- Laplace Transforms Properties
- Laplace Transforms
- Signals Sampling Techniques
- Signals Sampling Theorem
- Convolution and Correlation
- Hilbert Transform
- Distortion Less Transmission
- Fourier Transforms Properties
- Fourier Transforms
- Fourier Series Types
- Fourier Series Properties
- Fourier Series
- Signals Analysis
- Systems Classification
- Signals Basic Operations
- Signals Classification
- Signals Basic Types
- Signals & Systems Overview
- Signals & Systems Home
Signals and Systems Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Laplace Transforms Properties
The properties of Laplace transform are:
Linearity Property
If $,x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
& $, y(t) stackrel{mathrm{L.T}}{longleftrightarrow} Y(s)$
Then pnearity property states that
$a x (t) + b y (t) stackrel{mathrm{L.T}}{longleftrightarrow} a X(s) + b Y(s)$
Time Shifting Property
If $,x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
Then time shifting property states that
$x (t-t_0) stackrel{mathrm{L.T}}{longleftrightarrow} e^{-st_0 } X(s)$
Frequency Shifting Property
If $, x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
Then frequency shifting property states that
$e^{s_0 t} . x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s-s_0)$
Time Reversal Property
If $,x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
Then time reversal property states that
$x (-t) stackrel{mathrm{L.T}}{longleftrightarrow} X(-s)$
Time Scapng Property
If $,x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
Then time scapng property states that
$x (at) stackrel{mathrm{L.T}}{longleftrightarrow} {1over |a|} X({sover a})$
Differentiation and Integration Properties
If $, x (t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
Then differentiation property states that
$ {dx (t) over dt} stackrel{mathrm{L.T}}{longleftrightarrow} s. X(s) - s. X(0) $
${d^n x (t) over dt^n} stackrel{mathrm{L.T}}{longleftrightarrow} (s)^n . X(s)$
The integration property states that
$int x (t) dt stackrel{mathrm{L.T}}{longleftrightarrow} {1 over s} X(s)$
$iiint ,..., int x (t) dt stackrel{mathrm{L.T}}{longleftrightarrow} {1 over s^n} X(s)$
Multippcation and Convolution Properties
If $,x(t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s)$
and $ y(t) stackrel{mathrm{L.T}}{longleftrightarrow} Y(s)$
Then multippcation property states that
$x(t). y(t) stackrel{mathrm{L.T}}{longleftrightarrow} {1 over 2 pi j} X(s)*Y(s)$
The convolution property states that
$x(t) * y(t) stackrel{mathrm{L.T}}{longleftrightarrow} X(s).Y(s)$
Advertisements