- Z-Transforms Properties
- Z-Transforms (ZT)
- Region of Convergence
- Laplace Transforms Properties
- Laplace Transforms
- Signals Sampling Techniques
- Signals Sampling Theorem
- Convolution and Correlation
- Hilbert Transform
- Distortion Less Transmission
- Fourier Transforms Properties
- Fourier Transforms
- Fourier Series Types
- Fourier Series Properties
- Fourier Series
- Signals Analysis
- Systems Classification
- Signals Basic Operations
- Signals Classification
- Signals Basic Types
- Signals & Systems Overview
- Signals & Systems Home
Signals and Systems Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Fourier Transforms Properties
Here are the properties of Fourier Transform:
Linearity Property
$ ext{If},,x (t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega) $
$ ext{&} ,, y(t) stackrel{mathrm{F.T}}{longleftrightarrow} Y(omega) $
Then pnearity property states that
$a x (t) + b y (t) stackrel{mathrm{F.T}}{longleftrightarrow} a X(omega) + b Y(omega) $
Time Shifting Property
$ ext{If}, x(t) stackrel{mathrm{F.T}}{longleftrightarrow} X (omega)$
Then Time shifting property states that
$x (t-t_0) stackrel{mathrm{F.T}}{longleftrightarrow} e^{-jomega t_0 } X(omega)$
Frequency Shifting Property
$ ext{If},, x(t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega)$
Then frequency shifting property states that
$e^{jomega_0 t} . x (t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega - omega_0)$
Time Reversal Property
$ ext{If},, x(t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega)$
Then Time reversal property states that
$ x (-t) stackrel{mathrm{F.T}}{longleftrightarrow} X(-omega)$
Time Scapng Property
$ ext{If},, x (t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega) $
Then Time scapng property states that
$ x (at) {1 over |,a,|} X { omega over a}$
Differentiation and Integration Properties
$ If ,, x (t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega)$
Then Differentiation property states that
$ {dx (t) over dt} stackrel{mathrm{F.T}}{longleftrightarrow} jomega . X(omega)$
$ {d^n x (t) over dt^n } stackrel{mathrm{F.T}}{longleftrightarrow} (j omega)^n . X(omega) $
and integration property states that
$ int x(t) , dt stackrel{mathrm{F.T}}{longleftrightarrow} {1 over j omega} X(omega) $
$ iiint ... int x(t), dt stackrel{mathrm{F.T}}{longleftrightarrow} { 1 over (jomega)^n} X(omega) $
Multippcation and Convolution Properties
$ ext{If} ,, x(t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega) $
$ ext{&} ,,y(t) stackrel{mathrm{F.T}}{longleftrightarrow} Y(omega) $
Then multippcation property states that
$ x(t). y(t) stackrel{mathrm{F.T}}{longleftrightarrow} X(omega)*Y(omega) $
and convolution property states that
$ x(t) * y(t) stackrel{mathrm{F.T}}{longleftrightarrow} {1 over 2 pi} X(omega).Y(omega) $
Advertisements